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Phase Noise at PLL Output

This example shows how to predict the phase noise at the output of a phase-locked loop (PLL),
simulate the PLL using the PLL Testbench, and compare the simulation results to theoretical
predictions.

This example demonstrates three phase noise effects, individually or combined, depending on the
configuration you choose:

1 Reference modulation or phase noise
2 VCO phase noise
3 VCO phase noise subsampled by the feedback prescaler

Open the model PL1PhaseNoiseExample.slx.

open_system('PLlPhaseNoiseExample.slx"');
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This example uses an Integer N PLL with Single Modulus Prescaler from the Mixed Signal Blockset™.

The PLL Testbench generates the reference input signal for the PLL and measures the phase spectral
density at the output of the PLL.

The optional PRBS6 reference phase modulation in this model is used to contrast the response to
reference phase variation with the response to VCO phase noise.

The low pass resamplers at the inputs to the spectrum estimators are anti-aliasing filters. These
filters convert the variable step discrete signals to the fixed step discrete signals required by the
spectrum estimators.

The spectra of the PLL input and output signals are estimated and logged in the base workspace so
that you can compare the simulation results to the results of the theoretical calculations.



Phase Noise at PLL Output

The oscilloscope in the example model provides a progress indicator for the simulation.

To evaluate the behavior of the PLL under a variety of conditions, use a separate workspace file for
each different set of conditions. This example provides five such supporting .mat files. All of them
produce the same loop transient response.

1 Baseline.mat - As close to ideal as possible. Use to evaluate numerical noise introduced by the
model and simulator.

2 ReferenceModulation.mat - Introduce reference phase modulation. Use to evaluate the phase
transfer function of the PLL.

3 VCOPhaseNoise.mat - Introduce VCO phase noise and a prescaler ratio equal to one. Use to
evaluate the PLL control loop's error function.

4 InbandPhaseNoise.mat - Introduce VCO phase noise and a prescaler ratio greater than one.
Use to evaluate the effect of the prescaler ratio on the PLL control loop's error function.

5 TotalPhaseNoise.mat - All phase noise sources are enabled, and the prescaler ratio is greater
than one.

Theoretical Calculations
This section shows how to calculate the expected response of the PLL.

The target loop bandwidth of the PLL is 2 MHz with a 45 degree phase margin. The loop filter
components are scaled to practical level and the charge pump output current is scaled by the same
factor to maintain the same loop dynamics.

The function getPl1LoopResponse calculates the loop gain as a function of frequency and then
calculates the expected response to signals from outside or inside the PLL. Define the input
parameters such as charge pump output current, VCO sensitivity, prescaler ratio and passive loop
filter component values for the getP11LoopResponse function to use.

PLlKphi = 5e-3; % Charge Pump output current

P11lKvco = 100e6; % VCO sensitivity

PLIN = 70; % Prescaler ratio

P11R2 = 1.33e3; % Loop filter resistance for second order response (ohms)
P11R3 = 1.7e4; % Loop filter resistance for third order response (ohms)
P11R4 = 0; % Loop filter resistance for fourth order response (ohms)
P11C1 = 1.31le-11; % Loop filter direct capacitance (F)

P11C2 = 1.44e-10; % Loop filter capacitance for second order response (F)
P11C3 = 9.41e-13; % Loop filter capacitance for third order response (F)
P11C4 = 0; % Loop filter capacitance for fourth order response (F)

The script prepareExpectedSpectra computes the spectral density of the reference phase
modulation and the VCO output phase noise. The script then also combines the result with the PLL
loop response to obtain the phase noise spectral density at the output of the PLL. The reference
phase modulation is a deterministic process for which the amplitude of the spectral components is
expressed as a fraction of the carrier amplitude (dBc). In contrast, the VCO phase noise is a
stochastic process for which the spectral density is expressed in dBc/Hz.

Define the input parameters for the prepareExpectedSpectra script such as reference input
frequency, number of reference cycles per symbol of PRBS6 phase modulation data pattern,
amplitude of a single spectral component of the PRBS6 reference phase modulation, resolution
bandwidth to evaluate spectra with phase noise, frequency offset vector, and phase noise spectral
densities at specified frequency offset.
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P1LlAddPhaseNoise = 'on'; % Enable VCO phase noise
PllFoffset = [30e3 100e3 le6 3e6 10e6]; % VCO offset frequencies (Hz)
P11PhaseNoise = [-92 -106 -132 -143 -152]; % VCO output phase noise (dBc/Hz)
CfgSelectRefMod = '0°'; Enable reference phase noise modulation
CfgRef = 30e6; Reference frequency
CfgCyclesPerSymbol = 2; Reference cycles per PRBS6 modulation symbol
CfgModLevel = -110; Reference phase modulation level (dBc/Hz)
CfgResBandwidth = 100e3; PLL Testbench resolution bandwidth
CfgTargetSpectrum = [100e3 -145;1e6 -135;3e6 -140;10e6 -1501];

% PLL Testbench target phase noise (dBc/Hz)

o® o o o° o°

If the variable WorkspaceFile exists and points to a file that can be loaded, load that file into the
workspace. To use a configuration supplied with this example, set the value of WorkspaceFile to the
name of the file for that configuration.

if exist('WorkspaceFile','var') && exist(WorkspaceFile,'file")
load (WorkspaceFile);
end

Analyze the PLL control loop using the getP11LoopResponse function. The outputs of this function
are:

* LoopFrequency - The frequency points at which the expected responses is calculated.
* LoopZofs - The transfer impedance of the loop filter as a function of the frequency.

* LoopGofs - The loop gain from the output of the prescaler to the input of the VCO, including the
VCO voltage sensitivity. Note that the prescaler ratio is not included in this output, but is included
in the closed loop transfer functions.

* LoopHofs - The closed loop phase transfer function fromt the PLL reference input to the PLL
output.

* LoopEofs - The closed loop phase error transfer function with respect to the VCO output.

[LoopFrequency, LoopZofs, LoopGofs, LoopHofs, LoopEofs, LoopPhStep] = ...
getPllLoopResponse([0,P11R2,P11R3,P1L1R4], [PL1C1,P11C2,P11C3,P11C4],
P11Kphi,P11Kvco,P1l1lN);

Organize the computation of expected spectral density to place spectral components directly into the
frequency bins.

The workspace variables for the expected spectral density are:

* ExpInputFrequency - A vector of frequencies for which the expected input spectrum is
calculated (Hz).

* ExpInputSpectrum - A vector of expected spectrum values at the reference input to the PLL
(dBm into a one ohm load at a resolution bandwidth of CfgResBandwidth).

* ExpOutputFrequency - A vector of frequencies for which the expected output spectrum is
calculated (Hz).

* ExpOutputSpectrum - A vector of expected spectrum values at the PLL output (dBm into a one
ohm load at a resolution bandwidth of CfgResBandwidth).

prepareExpectedSpectra;

Examine Expected Results

In this section, examine the expected PLL behavior.
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Phase Noise at PLL Output

Start by looking at the closed loop response of the PLL. Consider three fundamental responses:
transient response, transfer function, and error function.

Transient response

In most PLL applications, the loop transient response is most important when the loop is initially
acquiring phase lock. For very small initial frequency offsets or for relatively high closed loop
bandwidth, the transient response predicts the loop acquisition time reasonably accurately. However,
in many cases, the loop transient response only represents the response during phase acquisition,
after frequency acquisition has already occurred. This example only addresses the phase acquisition
time.

Plot the loop transient response of the PLL.

figure(1l);

plot(LoopPhStep.Time,LoopPhStep.Data);

title({'PLL Loop Transient Response';'To Unit Input Phase Step'});
xlabel('Seconds"');

ylabel('Output Phase');

PLL Loop Transient Response
To Unit Input Phase Step

100 .
E'D J -
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70 I 4

40 -

Output Phase
3

30 r 7

201 7

0 0.5 1 1.5 2 25 3 3.5
Seconds w1072

Transfer function

The transfer function from the reference input to the PLL output can be important either when the
PLL is expected to track a modulated input very accurately or when it is expected to filter out noise
from a noisy input.

Create a log-log plot of the PLL transfer function.
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figure(2);
semilogx(LoopFrequency,20*10ogl0(abs(LoopHofs)));
title('PLL Transfer Function');

xlabel('Hz");

ylabel('dB');

PLL Transfer Function
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Error function

The PLL control loop is expected to reject phase noise generated inside the PLL itself, such as VCO
phase noise. The transfer function between the VCO phase noise and the PLL output is sometimes
called the loop error function. Examining this transfer function helps compensate the loop error
before it is applied to another noise source.

Create a log-log plot of the PLL loop error function.

figure(3);
semilogx(LoopFrequency,20*1ogl0(abs(LoopEofs)));
title('PLL Loop Error Function');

xlabel('Hz');

ylabel('dB');
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PLL Loop Error Function
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Plot the total expected phase noise at the PLL output.

figure(4);

plot (ExpOutputFrequency, ExpOutputSpectrum);
title('PLL Output Spectrum');

xlabel('Hz');

ylabel('dBm into 1 ohm');

107

10°

xlim([PLIN*CfgRef-2*P11Foffset(end), PLIN*CfgRef+2*P1l1lFoffset(end)]);
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The phaseNoiseMeasure function is a callback function used by the PLL Testbench. It displays the
target output phase noise spectral density along with the simulated or expected phase noise spectral
density.

To compare the expected output phase noise to a specific design target, define the workspace
variable CfgTargetSpectrum. CfgTargetSpectrum consists of two column arrays that specify the
target phase noise at the output of the PLL. The first column specifies the frequency offsets in Hz and
the second column specifies the corresponding phase noise spectral density if dBc/Hz. The PLL
Testbench uses the callback function phaseNoiseMeasure to display the expected and simulated
phase noise spectral density.

View the expected PLL output phase noise in units of dBc/Hz.
[~] = phaseNoiseMeasure(ExpOutputFrequency, ExpOutputSpectrum,...

CfgResBandwidth, CfgTargetSpectrum(:,1).','on','5",
CfgTargetSpectrum(:,2).");
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Power Spectrum
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If the loop response is not satisfactory, you might look at more detailed results such as the loop filter
transimpedance (LoopZofs) to get additional insights that could help you improve the PLL design.

Run the Simulation

While the configuration process is straightforward, there are many parameters to be configured. Use
the configureExamplePLL script to configure the PLL Simulink® model, then execute the model.

configureExamplePl1l;
SimQut = sim('PllPhaseNoiseExample');
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To make the plotting easier, transform the results into the following four workspace variables:

SimInputFrequency - A vector of frequencies for which the input spectrum of the simulation is
stored (Hz).

SimInputSpectrum - A vector of spectrum values at the reference input to the PLL (dBm into a
one ohm load at a resolution bandwidth of CfgResBandwidth).

SimOutputFrequency - A vector of frequencies for which the output spectrum of the simulation
is calculated (Hz).

SimOutputSpectrum - A vector of simulated spectrum values at the PLL output (dBm into a one
ohm load at a resolution bandwidth of CfgResBandwidth).

Make the results easier to plot from the workspace.

SimInputFrequency = reshape(SimOut.InputFrequency.Data(: ,end) 1,11
SimInputSpectrum = reshape(SimOut.InputSpectrum.Data(:,end),1,[1);
SimOutputFrequency = reshape(SimOut.OutputFrequency.Data(: ,end) ,1,01);
SimQutputSpectrum = reshape(SimOut.OutputSpectrum.Data(:,end),1,[1);
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Compare Expected and Simulated Results

Compare expected and simulated phase noise at the PLL output.

figure(4);
plot (ExpOutputFrequency, ExpOutputSpectrum);
title('PLL Output Spectrum');
xlabel('Hz"');

ylabel('dBm into 1 ohm');
xlim([PLIN*CfgRef-2*P11Foffset(end), PLIN*CfgRef+2*PLlFoffset(end)]);

hold on;
plot(SimOutputFrequency,SimOutputSpectrum);
hold off;
PLL Output Spectrum
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View the expected PLL output phase noise in units of dBc/Hz.

[~] = phaseNoiseMeasure(SimOutputFrequency,SimOutputSpectrum,...
SimQutputFrequency(2)-SimOutputFrequency(1l),...

CfgTargetSpectrum(:,1)."',

‘on','5",CfgTargetSpectrum(:,2)."');
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Save the Configuration and Results

Save the entire workspace, including the system configuration in its current state and the results, to
a file. If the WorkspaceFile variable already exists, you can resave the current state to that file. To
save to a new file, change the value of WorkspaceFile.

if exist('WorkspaceFile', 'var')

save (WorkspaceFile);
end

See Also
Integer N PLL with Single Modulus Prescaler | PLL Testbench | Variable Pulse Delay

More About
. “PLL Design and Verification Using Data Sheet Specifications” on page 1-13
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PLL Design and Verification Using Data Sheet Specifications

This example shows how to use Mixed-Signal Blockset™ to model a commercial off-the-shelf integer-
N phase-locked loop (PLL) with dual modulus prescaler operating around 4 GHz. You can verify the
PLL performance, including phase noise.

You can use PLL models to explore and design different loop filters, simulate different operating
frequencies, determine different divider ratios, or assess the frequency synthesizer performance once
embedded in a larger system. For example, Mixed-Signal Blockset PLL models can be helpful if you
need to integrate a PLL into a System on Chip or a System on Board.

For this example, use the data sheet of Skyworks SKY73134-11. This is a wideband PLL Frequency
Synthesizer operating between 350 MHz and 6.2 GHz.

Build VCO Model

Open the model VCO_model, which has VCO and VCO Testbench blocks from Mixed-Signal Blockset
connected together.

model = 'VCO model"’;
open_system(model);

WCO /—
' |«
from voo Tastbanch fo veo wedrl \9 v out

VCO @ 4GHz

Y

Copyright 2019 The MathWorks, Inc

WCO Testbench

Inspect the data sheet to identify the characteristics of the voltage controlled oscillator (VCO). VCO is
the main component contributing to the phase noise of the PLL. Table 6 of the data sheet lists the
typical VCO sensitivity (Kvco) as 20 MHz/V. Set the Voltage Sensitivity of the VCO block to 20e6
Hz/V. The data sheet does not provide the free running frequency (Fo) of the VCO, so you can set it to
an arbitrary value close to the operting frequency. In this case, set Free running frequency to
3.9e9 Hz.

For this example, simulate the PLL behavior when the PLL locks around 4 GHz. Table 7 of the data
sheet lists the VCO phase noise profile as: around 4 GHz is,

1-13
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—105 dBc/Hz at 100 kHz
—131 dBc/Hz at 1 MHz
—142 dBc/Hz at 3 MHz
—152 dBc/Hz at 10 MHz

Use the phase noise profile to add phase noise impairment to the VCO. To speed up simulation, ignore
the phase noise data points at lower frequency offsets. Simulation takes longer to capture the phase
noise profile close to the carrier.

Measure VCO Phase Noise

The testbench provides the control voltage (Vctrl) stimulus to the VCO and measures the VCO phase
noise. The output frequency (F) of the VCO is :

F=RKveoxVetrl + Fo

Substituting the values for the output frequency, the free running frequency, and the voltage
sensitivity, the equation gives a control voltage of be 5 V.

Click on Autofill setup parameters and Autofill target metric buttons to automatically populate
the measurement parameters for both setup and target metric. The target metric provides the
anticipated phase noise profile for comparison with the simulation results. The testbench setup
properties define the signal sampling frequency and the measurement resolution bandwidth.

To speed up simulation time, reduce No. of spectral averages to 4.

Run the simulation. Verify that the VCO model reproduces the phase noise profile specified in the
target metric.

VCO
Testbench
Offset Frequency Measured Phase noise Target Phase noise
(Hz) (dBc/Hz) (dBc/Hz)
100k -102.4 -105
™M -128.7 -131
P from vco 1%’;{"1'1 '_1135"%% '_1145‘3 to veo P vetrl veo out

VCO @ 4GHz

Copyright 2019 The MathWorks, Inc

VCO Testbench
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Phase Noise
No. of Averages = 4 Center Frequency = 4 GHz
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You can now proceed with modeling the complete PLL system and verify its phase noise performance.

Build PLL Model

From the Features section of the data sheet, see that this PLL is of type integer-N and it uses a dual
modulus prescaler. The data sheet also provides the settings for the prescaler. Hence, use the
Integer-N PLL with Dual Modulus Prescaler from Mixed-Signal Blockset.

bdclose(model) ;
model = 'PLL model';
open_system(model);
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PLL
Testbench
Medric Measured Target
Frequency  4.200 GHz 4.200 GHz clk out
Lock time 0.00s 1.00 ms Integer N
| from pll to pll P clk in Dual
Madulus
Phase Moise f_out P D

Frequency (Hz) Measured (dBc/Hz)  Target (dBoc/Hz)

1e+05 -55.22 -0a.00 Integer M PLL with Dual Modulus Prescaler
1e+0E -T2.87 -128.00
1e+07 -137.58 -150.00

PLL Testbench

Copyright 2019 The MathWeorks, Inc

Open the mask of the PLL block and provide the specs for each of the subsystems:

* Phase Frequency Detector — For the phase frequency detector (PFD), the data sheet does not
provide any detail. Leave the deadband compensation to its default value.

* Charge Pump — For the charge pump, the data sheet provides the typical value for the current of
2.7 mA (data sheet, Table 5). Specify the same value in the PLL model.

* VCO — For the VCO, use the same specifications used in the Build VCO Model section. The
sensitivity is equal to 20 MHz/V. Specify a free running frequency that is close to the final locking
frequency, for example 4. 18 GHz. Include phase noise with the same noise profile that you just
simulated.

* Divider — For the PLL to lock at 4.2 GHz when using a reference oscillator operating at 1.6 MHz
(data sheet, Figure 17), the divider ratio is equal to:

4. 2e9
1. Geh

= 2625

To achieve the effective divider ratio of 2625, set the Prescaler divider value to 16, Swallow
counter value to 17, and Program counter value to 163.

* Loop Filter — The data sheet provides the recommended loop filter component values in Figure
22. Manually input these values to implement the filter. Set Loop filter type to 3rd order passive.
Also set the loop filter component values:

Cl =100e-12F

C2=2.2e-9F
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C3=100e-12F
R2 = 10e3 1}
R3=2.2e31}

Verify the closed and open loop performance of the PLL with this implementation of the loop filter.
The resulting phase margin is 55 degrees. The phase margin along with the pole zero locations
confirm the stability of the PLL.

Bode-Plot with Phase margin: 55° (UGF: 29.1 kHz)
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Use this setup to design different loop filters and verify your design. For example, use this PLL over a
different operating frequency.

Finally, to verify the PLL locking behavior in the time domain, probe and plot the output signal of the
loop filter.

Measure PLL Performance

Connect the PLL to a Mixed-Signal Blockset PLL Testbench to validate its performance. The
testbench defines the stimuli used to test the PLL. In this case, use a square waveform with 1.6 MHz
frequency.

Set up the testbench to measure operating frequency, lock time, and phase noise. The data sheet
specifies a 1 ms lock time with 1 ppm frequency error, that is to say 4.2 kHz (Table 5). Provide the
same error tolerance. For measuring the phase noise, use a configuration similar to the one used for
the VCO, but reduce the resolution bandwidth for higher accuracy.

For the target metric, refer to the data sheet for both the lock time (Table 5) and the closed loop

phase noise measurements performed on the evaluation board (Figure 17). The phase noise profile
measured at 4.2 GHz is:
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e —98 dBc/Hz at 100 kHz
e —129dBc/Hz at 1 MHz
e+ —150 dBc/Hz at 10 MHz

With this setup, run the PLL simulation and verify the performance.

PLL
Testbench
Metric Measured Target
Ik out

Freguency 4.200 GHz 4.200 GHz c

Lock time 170.77 us 1.00 ms Integer N
from pll to pll P clkin Dual
. Modulus
Phase Noise If_out » D

Frequency (Hz) Measured (dBc/Hz)  Target (dBc/Hz)

1e+05 -107.15 -98.00 -
1e+06 -133.22 -129.00 Integer N PLL with Dual Modulus Prescaler
1e+07 -158.26 -150.00

PLL Testbench

Copyright 2019 The MathWorks, Inc
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Phase Noise
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In this case, the simulation takes a few minutes. To speed up simulation time, you can relax the
settings for measuring the phase noise. For example, use a larger resolution bandwidth or reduce the
number of spectral averages.

The simulation results are in excellent agreement with the phase noise measurements reported in the
data sheet.

Reference
Skyworks SKY73134-11
Copyright(C) 2019 The MathWorks, Inc. All rights reserved.

See Also
VCO | VCO Testbench | Integer N PLL with Dual Modulus Prescaler | PLL Testbench
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More About

. “Design and Evaluate Simple PLL Model”
. “Phase Noise at PLL Output” on page 1-2
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Tune Phase-Locked Loop Using Loop-Shaping Design

1-22

This example shows how to tune the components of a passive loop filter to improve the loop
bandwidth of a phase-locked loop (PLL) system. To obtain a desired loop frequency response, this
example computes the loop filter parameters using the fixed-structure tuning methods provided in the
Control System Toolbox™ software. The PLL system is modeled using a reference architecture block

from the Mixed-Signal Blockset™ library.

Introduction

A PLL is a closed-loop system that produces an output signal whose phase depends on the phase of its
input signal. The following diagram shows a simple model with a PLL reference architecture block
(Integer N PLL with Single Modulus Prescaler) and a PLL Testbench block.

W

clk out

PLL Integer N
from pl Testbench to pll B clk in $IHQ|E‘
Modulus
H_out
- loopFilterOutput
Integer N PLL with Single Modulus Prescaler
PLL Testbench

The closed-loop architecture inside the PLL block consists of a phase-frequency detector (PFD),
charge pump, loop filter, voltage controlled oscillator (VCO), and prescaler.
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The Mixed-Signal Blockset library provides multiple reference architecture blocks to design and
simulate PLL systems in Simulink®. You can tune the components of the Loop Filter block, which is a
passive filter, to get the desired open-loop bandwidth and phase margin.

Using the Control System Toolbox software, you can specify the shape of the desired loop response
and tune the parameters of a fixed-structure controller to approximate that loop shape. For more
information on specifying a desired loop shape, see “Loop Shape and Stability Margin Specifications”
(Control System Toolbox). In the preceding PLL architecture model, the loop filter is defined as a
fixed-order, fixed-structure controller. To achieve the target loop shape, the values of the resistances
and capacitances of the loop filter are tuned. Doing so improves the open-loop bandwidth of the
system and, as a result, reduces the measured lock time.

Set Up Phase-Locked Loop Model

Open the model.

model = 'PLL TuneLoopFilter';
open_system(model)

The PLL block uses the configuration specified in “Design and Evaluate Simple PLL Model” for the
PFD, Charge pump, VCO, and Prescalar tabs in the block parameters. The Loop Filter tab
specifies the type as a fourth-order filter, and sets the loop bandwidth to 100 kHz and phase margin
to 60 degrees. The values for the resistances and capacitances are automatically computed.

To observe the current loop dynamics of the PLL, in the block parameters, on the Analysis tab, select
Open Loop Analysis and Closed Loop Analysis. The unity gain frequency is 100 kHz. The closed-
loop system is stable and the 3-dB bandwidth is 128.94 kHz.
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Bode Plot
Phase margin: 75.3°, Loop bandwidth {Unity gain frequency): 100.0 kHz
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Simulate the model. The PLL Testbench block displays the PLL lock time and phase noise metrics. To
plot and analyze the phase noise profile, in the PLL Testbench block parameters, on the Stimulus
tab, select Plot phase noise. The measured lock time is 2.30 microseconds.

open_system([model, '/Scope']
sim(model);

)

PLL

Testbench
Mefric Measured Target
Lock time 2.30 us 3.00 us
from pl Phase Noise to pl
Frequency (Hz) Measured (dBc/Hz)  Target (dBo/Hz)
3e+05 -100.27 -85.00
1e+06 -111.18 -125.00
3e+06 -143.28 -150.00
1e+07 -182 80 -180.00
PLL Testbench

clk out
Integer N
- clk in Single
Modulus
.ot ]
loopFilarOutput

Integer N PLL with Single Modulus Prescaler
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Define the PLL parameters needed to build the closed-loop system in MATLAB®.

P11Kphi
P11Kvco
PLIN

PL1R2
PL1R3
PL1R4
P11C1
Pl1C2
P11C3
PL1C4

5e-3;
1e8;
70;

88.3;
253;

642;
8.13e-10;
1.48e-7;
1.59e-10;
9.21e-11;

o® o° of

o® o° o o° o° o° o°

Charge pump output current
VCO sensitivity
Prescaler ratio

Loop
Loop
Loop
Loop
Loop
Loop
Loop

filter
filter
filter
filter
filter
filter
filter

Build Custom Tunable System

resistance for second-order response (ohms)
resistance for third-order response (ohms)
resistance for fourth-order response (ohms)
direct capacitance (F)

capacitance for second-order response (F)
capacitance for third-order response (F)
capacitance for fourth-order response (F)

To model the loop filter as a tunable element, first create tunable scalar real parameters (see realp
(Control System Toolbox)) to represent each filter component. For each parameter, define the initial
value and bounds. Also, specify whether the parameter is free to be tuned.

Use the current loop filter resistance and capacitance values as the initial numeric value of the
tunable parameters.

% Resistances
R2 = realp('R2',P11R2);

R2.Minimum
R2.Maximum

50;
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R2.Free = true;

R3 = realp('R3',P11R3);
R3.Minimum 50;
R3.Maximum 2000;
R3.Free = true;

R4 = realp('R4"',P1L1R4);
R4 .Minimum 50;

R4 .Maximum 2000;
R4.Free = true;

% Capacitances

Cl = realp('C1l',P11C1);
Cl.Minimum = le-12;
Cl.Maximum = le-7;
Cl.Free = true;

C2 = realp('C2',P11C2);
C2.Minimum le-12;
C2.Maximum le-7;
C2.Free = true;

C3 = realp('C3',P1L1C3);
C3.Minimum le-12;
C3.Maximum le-7;
C3.Free = true;

C4 = realp('C4',P1L1C4);
C4.Minimum = le-12;
C4.Maximum = le-7;
C4.Free = true;

Using these tunable parameters, create a custom tunable model based on the loop filter transfer
function equation specified in the More About section of the Loop Filter block reference page.
loopFilterSys is a genss (Control System Toolbox) model parameterized by R2, R3, R4, C1, C2,
C3, and C4.

RyCrs +1
(s) = 3 2
S(Ags° + A3zs” + Ays + Aq)

Ay = C1C2C3C4RoR3Ry

Az = C1CyRyR3(C3 + Cy) + C4R4(CoC3R3 + C1C3R3 + C1CyRy + C2C3Ry)
Ay = CyRy(C1 + C3+ Cy) + R3(C1 + Cp)(C3 + Cy) + C4R4(C1 + Cy + C3)
A1=C1+Cy+C3+Cy

A4 = C1*C2*(C3*C4*R2*R3*R4;

A3 = C1*C2*R2*R3*(C3+C4)+C4*R4* (C2*C3*R3+C1*C3*R3+C1*C2*R2+C2*C3*R2);
A2 = C2*R2*(C1+C3+C4)+R3*(C1+C2)*(C3+C4)+C4*R4* (C1+C2+C3);

Al = C1+C2+C3+C4;

loopFilterSys = tf([R2*C2, 1]1,[A4, A3, A2, Al, 0]);

Use the transfer function representations to define the fixed blocks in the architecture (charge pump,
VCO, and prescaler), based on their respective frequency response characteristics [1].
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chargePumpSys = tf(PLlKphi,1); % Linearized as a static gain
vcoSys = tf(PllKvco,[1 0]); % Linearized as an integrator
prescalerSys = tf(1/P1IN,1); % Linearized as a static gain

Define input and output names for each block. Connect the elements based on signal names (see
connect (Control System Toolbox)) to create a tunable closed-loop system (see genss) representing
the PLL architecture as shown.

_ ¥+ 1f x o x 1f_out N PlliKveo
» - 8
Analysis Point
PFD
Charge Pump VCO
Loop Filter veo out
prescaler_out
1/PlN|e
Prescaler
chargePumpSys.InputName = 'pfd out'; % Charge pump (fixed block)
chargePumpSys.QutputName = 'cp out';
loopFilterSys.InputName = 'cp out'; % Loop filter (tunable block)
loopFilterSys.OutputName = '1f x';
AP = AnalysisPoint('X"); % Analysis point does not change the archite
AP.InputName = '1f x';
AP.OutputName = 'lf out';
vcoSys.InputName = 'Lf out'; % VCO (fixed block)
vcoSys.OutputName = 'vco out';
prescalerSys.InputName = 'vco out'; % Prescaler (fixed block)
prescalerSys.OutputName = 'prescaler out';
pfd = sumblk('pfd out = ref - prescaler out'); % Phase-frequency detector (sum block)

% Create a genss model for the closed-loop architecture
CLO = connect(chargePumpSys, loopFilterSys,AP,vcoSys,prescalerSys,pfd, 'ref', 'vco out');

Loop-Shaping Design

Define the loop gain as a frequency-response data model by providing target gains for at least two
decades below and two decades above the desired open-loop bandwidth. The desired roll-off is
typically higher, which results in a higher attenuation of phase noise.

Specifying the appropriate target loop shape is the critical aspect of this design. The tunable
compensator is a fourth-order system with a single integrator and a single zero, and the plant
represents an integrator. The loop gains must be a feasible target for the open-loop structure.
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For tuning the loop filter, create a tuning goal based on a target loop shape specifying the integral
action, a 3 MHz crossover, and a roll-off requirement of 40 dB/decade. The goal is enforced for three
decades below and above the desired open-loop bandwidth.

LoopGain = frd([100,10,1,1le-2,1e-4],2*pi*[1le4,1e5,3e6,3e7,3e8]);
LoopShapeGoal = TuningGoal.LoopShape('X',LoopGain);
LoopShapeGoal.Focus = 2*pi*[1le3, 1le9];

LoopShapeGoal.Name = 'Loop Shape Goal';

frd uses response data and
Use AnalysisPoint as locat.
Enforce goal in frequency
Tuning goal name

o® o° of o°

MarginsGoal = TuningGoal.Margins('X',7.6,60);
MarginsGoal.Focus = [0 Inf];
MarginsGoal.Openings = {'X'};
MarginsGoal.Name = 'Margins Goal';

Observe the current open-loop shape of the PLL system with reference to the target loop shape. S
represents the inverse sensitivity function and T represents the complementary sensitivity function.
By default, Control System Toolbox plots use rad/s as the frequency unit. For more information on
how to change the frequency unit to Hz, see “Toolbox Preferences Editor” (Control System Toolbox).

figure
viewGoal(LoopShapeGoal,CLO)

Loop Shape Goal: Minimum and maximum loop gains (CrossTol =0.1)

4':' 3 T T T
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i S
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Use systune to tune the fixed-structure feedback loop. Doing so computes the resistance and

capacitance values to meet the soft design goal based on the target loop shape. Run the tuning
algorithm with five different initial value sets in addition to the initial values defined during the
creation of the tunable scalar real parameters.

Options = systuneOptions();
Options.SoftTol = le-5;
Options.MinDecay = le-12;
Options.MaxRadius = lel2;
Options.RandomStart = 5;

Relative tolerance for termination

Minimum decay rate for closed-loop poles
Maximum spectral radius for stabilized dynamics
Number of different random starting points

o® o° o° o°

[CL,fSoft,gHard,Info] = systune(CLO, [LoopShapeGoal; MarginsGoal],[],0Options);

Final: Soft = 3.16, Hard = -Inf, Iterations = 79

Final: Failed to enforce closed-loop stability (max Re(s) = 3.1le+04)
Final: Failed to enforce closed-loop stability (max Re(s) = 6.7e+04)
Final: Failed to enforce closed-loop stability (max Re(s) = 6.3e+04)
Final: Failed to enforce closed-loop stability (max Re(s) = 7.5e+04)
Final: Failed to enforce closed-loop stability (max Re(s) = 4.9e+04)

systune returns the tuned closed-loop system CL in generalized state-space form.

The algorithm fails to converge for the random initial values, and provides a feasible solution only
when the current loop filter component values are chosen as the initial conditions. For tuning
problems that are less complex, such as a third-order loop filter, the algorithm is less sensitive to
initial conditions and randomized starts are an effective technique for exploring the parameter space
and converging to a feasible solution.

Examine the tuned open-loop shape with reference to the target loop shape. Observe that while the
tuned loop shape does not meet the target, the open-loop bandwidth increases while the loop keeps
the same high-frequency attenuation.

figure
viewGoal(LoopShapeGoal,CL)
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Loop Shape Goal: Minimum and maximum loop gains (CrossTol =0.1)
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Export Results to Simulink Model

Extract the tuned loop filter component values.

Rtuned = [getBlockValue(CL,'R2'), ...
getBlockValue(CL, 'R3'), ...
getBlockValue(CL, 'R4")];

Ctuned

[getBlockValue(CL,'C1"), ...
getBlockValue(CL,'C2"), ...
getBlockValue(CL,'C3"), ...
getBlockValue(CL,'C4")];

Write the tuned loop filter component values to the PLL block using the setLoopFilterValue
helper function provided with the example.

blk = [model, '/Integer N PLL with Single Modulus Prescaler'];
setLoopFilterValue(blk,Rtuned,Ctuned);

Observe the Open Loop Analysis and Closed Loop Analysis plots from the Analysis tab in the Integer
N PLL with Single Modulus Prescaler block parameters. The unity gain frequency and the 3-dB
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bandwidth show improvement and are now 341.4 kHz and 511.72 kHz, respectively, while the loop

keeps the same phase noise profile.

Bode Plot

Phase margin: 71°, Loop bandwidth (Unity gain frequency): 341.4 kHz
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Simulate the model and get the PLL Testbench measurements and loop filter output with the tuned

components.
sim(model);
PLL
Testbench
Metric Measured Target
Lock time 1.02 us 3.00us clk out
Integer N
P froom pll Phase Noise to pll P clkin Single
Modulus [:I
Frequency (Hz) Measured (dBc/Hz) Taagal {dBc/Hz) If_out - >
3e+05 -110.95 -85.00 leopFilterOutput
1e+06 =116.07 =125.00
3e+06 =130.34 =150.00 o
1e+0T 154 Bs “180.00 Integer N PLL with Single Modulus Prescaler
PLL Testbench
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Ready Sample based T=7 5e-05
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References

[1] Banerjee, Dean. PLL Performance, Simulation and Design. Indianapolis, IN: Dog Ear Publishing,
2006.
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Digital Phase Locked Loop

This example shows how to model a digital phase locked loop using the Mixed-Signal Blockset™. In a
digital phase locked loop, phase detection is performed by a time to digital converter (TDC), loop
filtering is performed by a digital filter, and the oscillator is a digitally controlled oscillator (DCO).
This example demonstrates a behavioral model of a TDC, using the BiquadFilter from the DSP System
Toolbox™ as the digital loop filter, and using VCOs and DACs from the Mixed-Signal Blockset to
model the DCO.

This example also demonstrates one method for designing the control loop of a digital PLL by using
the PLL architectures from the Mixed-Signal Blockset to design an analog PLL and then translate the
analog design to its digital equivalent.

Digital PLL

Open and run the example model of a digital PLL. Then select the PLL Testbench in the model and
click the Plot phase noise button (or call the button's callback function). Save loop filter waveform
and phase noise data for later comparison to analog PLL results.

open('DigitalPLL.slx");

simout = sim(bdroot);
msblks.PLL.pl1TBPlotPhaseNoiseButton([bdroot '/PLL Testbench']);
dpll vcntl = simout.dpll ventl;

getDigitalPllPhaseNoise;

from pll

PLL
Testbench

Metric Measured  Target
Frequancy 2100 GHz  2.100 GHz . L
Lock time 425us 5.00 us ek =
o pll P ricik 2 »  Biquad | Digital Input Voo out |—4
Phase Noise 1 )
TDC -
me— Clock VEO input » (]
Frequency (Hz) ~ Measured (dBoHz)  Target (dBolHz) P
Je+05 -118.81 -120.00 oco Diglial ¥CO control vollage

1e+06 -134.08 -130.00
3e+06 -14372 -140.00
1e+07 -163.12 -150.00

—— outdpll_vcntl

ckout gop

_l_l_l_ "
L vy [
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Phase Noise
No. of Averages = 4 Center Frequency = 2.1 GHz
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Time to Digital Converter

The behavioral model of the TDC uses triggered subsystems to sample the clock time at the rising
edges of the reference clock and the PLL's fractional divider. It then calculates the difference
between these two sampled clock times and converts to an eight bit integer output value. To model a
digital feedback loop clocked by the reference, the output port sample rate is set to the reference
frequency.

open_system('DigitalPLL/TDC', 'force');

o f—

Y

> —CD

r
5’ ¥ & bits
Lf
Lyl 1 > " ‘ ’*}j‘réﬂ—'

i o tar bt err

[settings: B-bit converter
Wmim: -1730e8, Vmax: 1/20=8)
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Digital Controlled Oscillator

The DCO model represents a circuit in which the control for a VCO is set by a digital to analog
converter (DAC). The conversion in the DAC is triggered by the reference clock.

The phase noise impairment in the VCO is enabled. The DAC model can also model impairments.
However the DAC impairments are not enabled in the example model.

You could alternatively model a DCO by directly setting a Mixed-Signal Blockset VCO's control
voltage array to an array of consecutive integers that spans the range of digital input values. Then
you can set the output frequency array to supply the output frequency for each possible input value.

open_system('DigitalPLL/DCO"', 'force');

dagital —

Digital Input Ei“ﬂ’iai";igh‘“a-a i I_J"u_«\'}m outp——————»( 1 )
u chart e oo out
Clock

e 2 )
WCO imput

Digital Loop Filter

The loop filter is a BiquadFilter from the DSP System Toolbox. It is clocked at the reference clock
frequency by the output port of the TDC.

The digital loop filter is designed using the automated design feature of the Integer N PLL with
Single Modulus Prescaler model from the Mixed-Signal Blockset PLL Architectures library. An analog
loop filter is designed to achieve a specified loop bandwidth and phase margin, then the circuit values
and sample interval are translated to digital filter coefficients. To obtain the correct overall loop gain,
a scale factor is applied to the biquad filter model of the loop filter.

The derivation of the loop gain scale factor parallels that of A Design Procedure for All-Digital Phase-
Locked Loops Based on a Charge-Pump Phase-Locked-Loop Analogy.

The variables used in the derivation are
* Icr Charge pump maximum current amplitude
* Z(s) Analog loop filter transfer impedance

* Kveo VCO sensitivity for both analog and digital PLLs
Trer Reference clock period

* Aype TDC time resolution

H{s) Digital loop filter transfer function

* Kpac DAC gain
Note that for this example, the total range of the TDC is two reference clock periods.

The equation to make the loop gain of the analog and digital PLLs equal is:


https://web.engr.oregonstate.edu/~moon/research/files/cas2_mar_07_dpll.pdf
https://web.engr.oregonstate.edu/~moon/research/files/cas2_mar_07_dpll.pdf

Digital Phase Locked Loop

Iep Kveo 2Trer 1 R Kveo
Tz (5] ¢ = : H(s)Kpar ¢
27 5 2. Arpe E

Since the TDC and the DAC in this example have been configured to have the same number of bits,
this equation reduces to:

Iop
H(s): ‘I_)‘z(.q}

Since the function getS0SfromAnalogPLL included in this example produces filter coefficients that

o Lo
result in a filter gain Z($) the scale factor for the loop filter is 3.

While the loop filter coefficients, input signal and output signal in this example are all double
precision floating point, it would also be possible to use Fixed-Point Designer™ to model the entire
digital feedback path using exactly the same digital precision as in the circuit design, thus obtaining
even more precise evaluation of impairments such as quantization noise.

You can design and configure the digital loop filter by running the script:
%%%designDigitalLoopFilter;
Compare to Analog PLL

You can compare the loop acquisition of the analog PLL to that of the digital PLL. The additional high
frequency ripple in the analog loop filter response is due to the charge pump waveform.

open('AnalogPLL.slx");

simout = sim(bdroot);

apll vcntl = simout.apll vecntl;

plotLoopFilterWaveforms;
msblks.PLL.pl1TBPlotPhaseNoiseButton([bdroot '/PLL Testbench']);
plot(xdpll,ydpll, 'LineWidth',2, 'DisplayName', 'Digital PLL");

Y

L= =

Testbench
Mefric Measured Target
Frequency 2100 GHz 2100 GHz
; clk out
Lock time 2.75us 3.00 us Integer M
from pll o pll | clk in Single
Ph Mo Madulus
ase Moise ot > C]

Frequency (Hz) Measured (dBc/Hz)  Target (dB
Se+05 424.18 12000 It T T T T —— | Analog VCO control voltage
1e+08 124.99 -130.00 nteger wi ingle Modulus Prescaler
Je+0d -135.02 -140.00

Ao T AEE TA AE i

Y

out.apll_vcntl
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Model PLLs in the Phase Domain

This example shows how to model a phase-locked loop (PLL) in the phase domain, compare the
analytic results to simulation results in the time domain, and identify the advantages and
disadvantages of each approach. Most PLL analysis is performed in the phase domain, and this
example shows you how to produce a complete analysis using a minimum of time and effort.

The phase domain analysis calculates the PLL transfer function, loop error function, lock time and
noise transfer impedances using the Control System Toolbox™. (Automated loop tuning is described
in the “Tune Phase-Locked Loop Using Loop-Shaping Design” on page 1-22 example.)

The PLL design and the time domain simulation model were derived from the “Phase Noise at PLL
Output” on page 1-2 example.

The general loop filter modeling procedure uses the Mixed-Signal Blockset™ Linear Circuit Wizard
and was derived from the “Circuit Design Details Affect PLL Performance” on page 3-16 example.

Phase Domain Block Models

This section shows how to create the phase domain models for the individual blocks of an analog
phase/frequency locked loop.

The term phase domain refers to the representation of a periodic signal in terms of its phase with
respect to an ideal reference with the same period, instead of in terms of its voltage or current as a
function of time. Most PLL analyses (in contrast with simulations) treat the PLL as a linear control
system in the frequency domain, with the reference signal and the output of the VCO/divider
represented in the phase domain.

The Control System Toolbox supports both transfer function (tf) and state space (ss) models. While
the tf objects tend to be easier to use, the ss objects are often more accurate at higher frequencies.

Reference
PFD cp Loop vco = Output
_ Filter

Divider

To enable comparison of analysis results to time domain simulation results, this example uses the
same design values as the Phase noise at PLL output example.

P1lKphi = 5e-3; % Charge Pump output current

PllKvco = 100e6; % VCO sensitivity

PLT1N = 70; % Prescaler ratio

PLlR2 = 1.33e3; % Loop filter resistance for second order response (ohms)
PLIR3 = 1.7e4; % Loop filter resistance for third order response (ohms)
PLlR4 = 0; % Loop filter resistance for fourth order response (ohms)
P11C1 = 1.31e-11; % Loop filter direct capacitance (F)

P1L1C2 = 1.44e-10; % Loop filter capacitance for second order response (F)
PL1C3 = 9.41e-13; % Loop filter capacitance for third order response (F)
P1L1C4 = 0; % Loop filter capacitance for fourth order response (F)
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Reference

The reference signal is assumed to have the same frequency as the ideal reference used to define the
phase domain. However, there can be a time-varying phase offset between the reference signal and

the ideal reference. This phase offset Orey (£) or O 7(5) in the Laplace domain, is an input to the linear
control system.

VCO and Clock Divider

The VCO output phase is the integral of the VCO control voltage.
Bveolt) = [27!1.'.. coVenre(t)dt

Or, in the Laplace domain,

From this equation, the statement to construct an ss model of the VCO is
vco = ss(0,2*pi*P11Kvco,1,0);
Given a divider ratio PIIN (not necessarily integer), the ss object for the divider is

divN = ss(0,0,0,1/P1LIN);

The VCO also has phase noise at its output, characterized as a phase noise density "V olf) filtered
by the closed loop gain of the PLL.

Phase/Frequency Detector (PFD) and Charge Pump (CP)

Given phase domain inputs Ore(t) and Ove ©lt), and maximum output current fc'7, the average output
current of the PFD/CP is:

; -
icp(t) = (Oref(t) — fju'f'rﬂ[*}ﬁj_j

Or in the Laplace domain:
Trp
icp(s) = (Bref(s) — Ovcols) ——

The CP also has phase noise at its output, characterized as a phase noise density ™ (f),

Loop Filter

The loop filter presents a transfer impedance Z11(8) to the CP output, thus converting the CP output
current to a control voltage applied to the VCO. [ 1 ] describes a family of widely used second, third
and fourth order loop filters. More convenient modeling of this and other loop filter circuit designs
using the Linear Circuit Wizard is described in the General Loop Filters section below.

The second order filter is described by the equation
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14 -‘-‘H-:f.'::

Lals) = - - —
U HC O + R O

The higher order filters are formed by adding a series R/shunt C section. Given an k-1 order filter
design for which Z (k-1) (s)= (b(s))/(a_(k-1) (s)) , followed by series resistor R k and shunt capacitor
C k, the transfer impedance of the higher order filter is

b 5)
ag—y(s)(1 + sHiCy) + sCib(s)

z;_.[HJ

One way to transform these equations into an ss object is to calculate the transfer function
coefficients and then use the tf2ss function. Given that the filter has nsections sections, with
corresponding element values, the procedure is

nsections = 3;
b = zeros(1l,nsections+1);
a [PLTR2*P11C1*P11C2, Pl1C1l+P11C2, 0];
b(end-1:end) [PLLR2*P11C2, 1];
if nsections > 2
tmp = conv(b, [PL1C3 0]);
a = conv(a, [PLLR3*P11C3, 1]) + tmp(end-3:end);

end
if nsections > 3
tmp = conv(b, [PL1C4 0]);
a = conv(a, [PLLR4*P11C4, 1]) + tmp(end-4:end);
end
[A,B,C,D] = tf2ss(b,a);
zlf = ss(A,B,C,D);

The resistors in the loop filter also produce Johnson noise. This noise can be modeled as a noise
current that is then applied to a transfer impedance to produce a noise voltage at the output of the

loop filter. Given a resistance ft, the current spectral density is T’/ i Watts/Hz, where k is
Boltzmann's constant and T is the absolute temperature.

The noise transfer impedance calculation follows a very similar process as that for the overall loop
filter transfer impedance. However it must be calculated separately for each resistor in the loop filter.
The function getNoiseTransferImpedance(R, C,n) included with this example produces an ss

model for the device noise transfer impedance of the resistor .
Control Loop Analysis

This section shows how to perform numerous open and closed loop analyses using the phase domain
models of the PLL blocks. The process is to first create a closed loop system model and then invoke
functions that perform the desired analysis using that model.

Most of the analyses only require a single input, single output model of the PLL, and so you will
define that model first. The noise filtering analysis requires a multiple input model, and you will
define that in the noise filtering section.

In PLL control loop modeling the divider ratio N is usually kept separate from the gain G due to the
PFD/CP, loop filter, and VCO.

G(s) I: -:.’.’[.*f]:ilmhrl'.t a’d Ic 'f’z':."".:'hrl'ru

FT) 8 &
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The loop transfer function (from reference input to VCO output) is

| G(s)
I.“:-":l - |:_]. + I:’;l:‘.‘j}r"l;ﬁ'n:

The corresponding MATLAB code is

P1lKphi/2/pi*zlf*vco;
feedback(G,divN);
.InputName 'ref';
.QutputName ‘out';

IITITo®

Closed Loop Transfer Function
Use the bode function to plot the magnitude and phase of the closed loop transfer function.

NOTE: Configure the bode function to scale the frequency in Hz and not rad/s.

figure(l);

opts = bodeoptions('cstprefs');
opts.FreqUnits = 'Hz';
bodeplot(H,opts);

title('Closed Loop');

Closed Loop
~ From: ref To: out
':U T T T
— EHH'\-
[oa) T
2 ot ~— 1
5 ~
= S
.E NH"\-\.
= -50r - :
= .
N,
"MNNN
-100 : : : =
0 ———— . ,
T
= \
ﬁ 90T \\“\ |
3 R
@ -
£ 180 T Ny -
~_
- --\-\_\-\_\_\_\_‘_‘_‘——__
-270 ' ' '
(= b= r A O
10~ 10~ 10" 107 10°

Frequency (Hz)

You can also use other variants of the bode function to output results to the workspace for use in
other analyses.
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Loop Stability

Use the bode function again to plot the magnitude and phase of the loop gain, only this time use the
series function instead of the feedback function

GoverN = series(G,divN);
figure(2);
bodeplot(GoverN,opts);
title('Open Loop');

Open Loop
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™
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T
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o Of T ]
z ‘_\\_\-\
= -
E -5': | H“'H-..__h_ i
n T
o T
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100 . 1
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_ 1 5': 1 1 1 1
- 1 35 T !___,__—l-._\__\_\‘ T T
.-""-.-'.-'
B |
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o
= 25T 7
E -,
H-\-\-\-‘_"‘—\—\_._\_\_
570 . . . .
K 0 o, ra a Oy
10° 10+ 10™ 10° 107 107
Frequency (Hz)
Lock Time

Obtain the loop lock time from the loop step response.

figure(3);

[ystep,tstep] = step(H);
plot(tstep,ystep);
title('Lock Time');
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Noise Filtering
The analysis of noise filtering usually requires multiple inputs- one for each noise source. While such
a model could be used for all the analyses presented earlier in this section, that would complicate the

coding without providing additional insight. The required block diagram is shown below.



Model PLLs in the Phase Domain

nCP . nR4 ﬂn—zﬂ' nvVco——

cp__Ifi s Ifo
P
icp zIf

fbk

veo @ out

VvCO

Divider

divN

The procedure is to use the connect function to obtain a transfer function from each noise source to

the PLL output, apply each of these transfer functions to their respective
the resulting output noise spectral densities.

The zIf, vco, and divN blocks are already defined.

Define blocks required for noise filtering analysis.

[PL1R2, P1lR3, P11R4];

[P11C1, PllC2, P11C3, PllC4];
getNoiseTransferImpedance(R,C,2);
getNoiseTransferImpedance(R,C,3);

N N OX

r2
r3

The example loop filter is third order. No need for zr4.

icp = ss(0,0,0, PLlKphi/2/pi);

suml = sumblk('ph = ref - fbk');

sum2 = sumblk('lfi = cp + nCP');

sum3 = sumblk('vcntl = 1fo + nz2 + nz3');

sum4 = sumblk('out = vo + nVCO'");

z1lf.InputName = 'Lfi'; z1f.OutputName = 'lfo';
vco.InputName = 'vcntl'; vco.OutputName = 'vo';
divN.InputName = 'out'; divN.OQutputName = 'fbk';
icp.InputName = 'ph'; icp.OutputName = 'cp';
zr2.InputName = 'nR2'; zr2.0utputName = 'nz2';
zr3.InputName = 'nR3'; zr3.0utputName = 'nz3';

Connect the PLL as a control system.

noise source, and then plot

Hnoise = connect(icp,zlf,vco,divN,zr2,zr3,suml,sum2,sum3,sum4, ...

{'ref','nCP','nR2','nR3"','nVCO0"'}, 'out');
Hnoise(1,1);
Hnoise(1,2);

Href
Hncp
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Hnr2 = Hnoise(1,3);
Hnr3 = Hnoise(1,4);
Hnvco = Hnoise(1,5);

Plot the transfer functions

figure(4);

opts.PhaseVisible "off';

bodeplot(Href,Hncp,Hnr2,Hnr3,Hnvco, opts);

title('P1ll Noise Transfer Functions');

legend('ref to out','CP to out','R2 to out','R3 to out','VCO to out');

Pll Noise Transfer Functions
From: In{1) To: out

ref to out ey
CFP to out — -
R2 to out
3 to out
YCO to out

Magnitude (dB)

. 108 107 {

Frequency (Hz)

Output Noise Spectral Density

Each of the PLL's internal noise sources can have a flicker noise component (1/f) as well as an
additive white Gaussian noise (AWGN) component that is flat with frequency. In this section you will
model the combination of these two components as an AWGN process driving a single filter with a
gain that is unity at high frequencies but increases as 1/f below a predefined corner frequency. The
getFlickerFilter function supplied with this example provides a useful approximation.

The model for the VCO phase noise n VCO can be obtained from the measured or specified phase
noise of the VCO using the process defined for the MSB Ring Oscillator model. This process fits the
measured data to a physical model of the VCO (including flicker noise) while avoiding a couple of
inaccuracies present in most oscillator phase noise measurements. While the Ring Oscillator model
process produces a period offset standard deviation, the application to phase domain modeling
requires that the period offset be scaled to a phase offset.
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You can derive the n VCO model for the time domain simulation used in this example using the
following steps.

Pl1Foffset = [30e3 100e3 le6 3e6 10e6]; % VCO offset frequencies (Hz)
P11PhaseNoise = [-56 -106 -132 -143 -152]; % VCO output phase noise (dBc/Hz)
CfgRef = 30e6; % Reference frequency

f0 = PLIN*CfgRef;
[periodjitter,fcorner] = ..
msblks.VCO. estlmatePhaseN01seCore(fO P11Foffset,Pl1PhaseNoise);
phasejitter = 2*pi*fO*periodjitter; % Convert from period jitter to phase jitter
% Scale for the fact that the phase jitter occurs in one VCO output cycle.
n VCO = ss(0,sqrt(f0)*phasejitter,1,0) * getFlickerFilter(fcorner);

You can model the Johnson current noise in the loop filter resistors by multiplying the broadband
current noise density times a flicker filter. Due to the high quality of modern manufacturing, the
typical corner frequency for a resistor is somewhere between 1kHz and 10kHz.

kB = 1.3805e-23; % Boltzmann's constant

temp = 273 + 25; % Temperature, in degrees Kelvin for an ambient of 25C
fc_resistors = 3e3; % Typical resistor flicker corner frequency

n_r2 sqrt(4*kB*temp/PL1R2)*getFlickerFilter(fc_resistors);

n r3 sqrt(4*kB*temp/PL1R3)*getFlickerFilter(fc_resistors);

The CP is an active circuit, and the noise it generates is determined by details of the circuit design
and device parameters. Its noise density is best obtained from device data sheets. However at least
one version of such data data sheet parameters [ 1 ] characterizes the noise at the output of the PLL
and not the output of the charge pump.

For the sake of having some sort of model, suppose that

1. In steady state operation, on average one or the other CP output transistor is operating with a duty
cycled. 0.01 <d < 0.1

Tep

2. When one of the CP output transistors is on, its V25 = 0 channel conductivity 9ds is ¥ = Fslip
where 1 <= Vpp <= 5 and the saturation factor 2 < A < 10,

3. The channel current integration constant is /4 <=7 < 1.9
, oy JakT "dry

Then the CP current noise spectral density is Vv "

CP.d = 0.03;

CP_A = 4;

CP_VDD = 5;

CP_gamma = 1;
n CP = sqrt(4*kB*temp*CP_d*CP_gamma*P11Kphi/CP_A/CP_VDD)*
getFlickerFilter(fc_resistors);

Plot the phase noise contributions for all four noise sources.

figure(5);

opts.PhaseVisible = 'off';
opts.MagLowerLimMode = 'manual’;
opts.MagLowerLim = -200;
opts.XLimMode = 'manual';
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opts.XLim = [100,1e9];

nout CP = n_CP*Hncp;
nout R2 = n _r2*Hnr2;
nout R3 = n_r3*Hnr3;

nout VCO = n_VCO*Hnvco;
bodeplot(nout CP,nout R2,nout R3,nout VCO,opts);
title('P1Ll Phase Noise');

legend('CP to out','R2 to out','R3 to out','VCO to out');
opts.PhaseVisible = 'on';
opts.MagLowerLimMode = 'auto';

opts.XLimMode = 'auto';

Pll Phase Noise
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Compare to time domain results

This section compares the phase domain analysis results to the results of a time domain simulation
using the model presented in the “Phase Noise at PLL Output” on page 1-2 example. The clearest and
most direct approach is to compare the step response predicted by the analysis with the phase lock
response produced by the simulation.

The PllPhaseNoiseExample.slx model included with this example is statically configured for the
purposes of this section. The workspace output and a CP output monitor port give you access to
additional data when performing follow-on investigations such as are suggested in this section and
the Compare Z domain with Laplace domain subsection.

Run the time domain simulation and compare the loop lock response to a manually adjusted copy of
the phase domain step response.
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open_system('PllLoopDynamicsExample.slx");

out = sim('PllLoopDynamicsExample.slx");

figure(6);
plot(out.vco in.Time, squeeze(out.vco _in.Data));

hold on;

plot(tstep+1.46e-7,0.913/24.7*(ystep-70));
title('Comparison between Simulation and Analysis')
legend('Time domain simulation', 'Phase domain analysis')

from pll

PLL clk out

Testbench . Select Reference Modulation
) ta pll *u ¥ 0 F Nowtl— »o |ntelgerN
Metric Measured Target -‘\delay P clital | _o/o—b chkin Single cp_out ———»—]
Lock time 1.50 us 3.00 us fen Madulus

State Delay

i = = £3
File Tools View Simulation Help o

R NO N> =L R R P
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Time (us)

Ready T=3e-06
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PRESE Genarator H_out
Integer M PLL with Single Modulus Prescaler -
outveo_in
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The time domain loop lock response agrees quite well with the phase domain analysis result. It is
interesting that there is a portion of the time domain response that precedes the phase domain step
response. Using features explained in the following paragraph, you can demonstrate that this
phenomenon occurs even for very small phase steps, and is therefore a linear response phenomenon.

As an aid to further study, the reference phase modulator in the model has been configured to
produce a PRBS6 modulation with a long enough period to capture the entire step response, and a
low enough amplitude to assure operation within the linear range. You can explore the resulting
behaviors by toggling the switch at the output of the reference phase modulator, and you may also
find it helpful to examine the CP output to verify operation in the linear range.

Because of the very high loop bandwidth, some leakage of the high frequency portions of the CP
output are clearly visible in the loop filter output. These high frequency perturbations modulate the
VCO frequency and cause spurious responses at the output of the PLL. Phase domain analysis does
not address these spurious responses.

General Loop Filters

This section demonstrates how to use the Linear Circuit Wizard to obtain ss objects for detailed loop
filter designs, including their device noise transfer impedances.

The Linear Circuit Wizard reads a SPICE netlist and then sets up and solves Kirchhoff%s equations
algorithmically. Several different outputs are available including a report of poles, zeros, and gains.
You will transform these poles, zeros, and gains into an ss object.
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While this example supplies a SPICE netlist for the one loop filter that is used throughout the
example, you can apply the following procedure to the SPICE netlist for any of a wide variety of
circuits.

1. Open the model PllLoopDynamicsLCW.slx.

open_system('PllLoopDynamicsLCW.slx");

Limear
Circuit
Wizard

2. Open the mask for the Linear Circuit Wizard.
3. Select the Browse function and then select the SPICE file LoopFilter.sp.
4. Select the Parse netlist and redefine ports function.

5. Go to the Port Definition tab and make sure that the desired input and output ports were
configured by the netlist. If they were not configured by the netlist, you can use the Ports tab to add,
delete, or modify ports.

6. Go to the Device noise tab and enable the device noise for any potential device noise sources you
want to have modeled. In this example, enable the device noise generator for the resistors R2 and R3.

7. Select the Output poles and zeros function. A structure LinearCircuitWizardPoleZero is added to
your workspace.

For use in the following transformations, a copy of LinearCircuitWizardPoleZero has also been saved
to the file PIILCWPoleZero.mat included with this example.

The following transforms a set of poles, zeros and gains into a separate zpk model and then ss model
for each transfer impedance. Note that the Gains are low frequency gains, not including poles or

zeros at the origin, while the k factor is based on a different formulation of the transfer function. The
gain2k function is supplied with this example to aid you in performing the gain to k transformation.

load('PLLLCWPoleZero.mat');

p = LinearCircuitWizardPoleZero.Poles;
z = LinearCircuitWizardPoleZero.Zeros;
g = LinearCircuitWizardPoleZero.Gains;
k = gain2k(p,z,q9);

[A,B,C,D] = zp2ss(z{1},p,k(1)); % Loop filter transfer impedance
zlf lcw = ss(A,B,C,D);

[A,B,C,D] = zp2ss(z{2},p,k(2)); % R2 transfer impedance

zr2 lcw = ss(A,B,C,D);

[A,B,C,D] = zp2ss(z{3},p,k(3)); % R3 transfer impedance

zr3 lcw = ss(A,B,C,D);

Use bode plots to demonstrate that the transfer impedance models produced through the Linear
Circuit Wizard are identical to those produced through direct symbolic expressions.
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figure(7)
bodeplot(zlf,zlf lcw,zr2,zr2 lcw,zr3,zr3 lcw,opts);
title('Comparison of manual models to Linear Circuit Wizard models');

Comparison of manual models to Linear Circuit Wizard models

100 f—0u ]

E;:ru | _ i

Magnitude (dB)
&

Phase (deq)
1

f

-180 : — -
108 107 1

Frequency (Hz)

]
Lo

Z Domain Modeling

This section presents modeling in the uniform sampled time domain (Z domain) as an alternative to
modeling in the Laplace domain.

The PFD/CP only samples the phase difference between reference and output once every reference
cycle [ 2, 3 ]. Thus the dynamics of the PLL are inherently tied to that uniform sample rate, and the
mathematics that rigorously applies to a linear control loop analysis is Z domain mathematics. There
are important behaviors such as spurious responses that occur at higher frequencies. However linear
mathematics does not apply to those behaviors.

Given a Z domain expression Z1r(2) of the loop filter response, the Z domain expression for the loop
gain[ 3 ]is

TreflopRKven

Gis) = p—

Zir(z)

The remaining task is to convert the Z1r(#) function from the Laplace domain analysis to the Z
domain. There are many ways to perform this task, and several of them have been implemented in the
MATLAB c2d function. The appropriate option in this application is zero-order hold, the default for
the c2d function. Note that the Z domain modeling does require an explicit sample time value equal
to the period of the reference signal.
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fref = 30e6;

ts = 1/fref;

vcoz = ss(1,ts*P11Kphi*P11Kvco,1,0,ts);
divNz = ss(0,0,0,1/PL1lN, ts);

zlfz = c2d(zlf,ts);

Gz = vcoz*zlfz;

Hz = feedback(Gz,divNz);
Hz.InputName = 'ref’';
Hz.OutputName = 'out';
GzoverN = Gz*divNz;

Compare Z domain with Laplace domain

It is informative to compare the Z domain predictions of the closed loop, open loop, and step
responses with the corresponding results from the Laplace domain analysis.

figure(l);

bodeplot(H,Hz,opts);

title('Closed Loop');
legend('Laplace domain','Z domain');

figure(2);
bodeplot(GoverN,GzoverN,opts);
title('Open Loop');

legend('Laplace domain','Z domain');

figure(3);

step(H,Hz);

title('Lock Time');

legend('Laplace domain','Z domain');
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In this comparison, note that while the frequency response and step response from the Z domain
analysis are very similar to those obtained from the Laplace domain analysis, the phase margin
predicted by the Z domain analysis is far less than the design value chosen as part of the design in
the Laplace domain. This is a critical observation, as the loop phase margin is a fundamental

requirement of the control loop design.

As stated in [ 2 ], this is a typical result for PLLs whose loop bandwidth equals or exceeds one tenth
of the reference frequency. For much smaller loop bandwidths the difference between Z domain and

Laplace domain is much smaller.

Note, however, that it is the Laplace domain analysis result that closely matches the time domain
simulation. You might find this to be a suitable topic for further study.

Advantages and Disadvantages of Phase Domain Modeling
+ Both open and closed loop linear control analyses are easy, fast, reliable and accurate.

+ You can readily include detailed phase noise modeling in your analysis, with the effect of each
phase noise source indicated clearly and accurately.

+ Using the Linear Circuit Wizard, you can easily and accurately include detailed linear circuit
designs, especially for the loop filter.

- Phase domain modeling is limited to one sample per reference cycle, and therefore a Nyquist
frequency limit of one half the reference frequency. For example, it is not applicable to the analysis of

spurious output responses past this Nyquist limit.
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- While phase domain modeling can be applied to nonlinear behaviors such as frequency acquisition,
such applications lose the inherent advantages of linear control analysis associated with phase
domain modeling.

- Phase domain modeling is usually not applicable to models that combine the PLL with other circuits
that use the output of the PLL.
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Effect of Metastability Impairment in Flash ADC

This example shows how to customize a flash Analog to Digital Converter (ADC) by adding the
metastability probability as an impairment. You can measure the metastability probability impairment
to validate your implementation. The example also shows the effect of metastability on the dynamic
performance of the flash ADC. When the digital output from a comparator is ambiguous (neither zero
nor one), the output is defined as metastable. The ambiguous output is expressed as NaN. This
example model uses a MATLAB function block to add the metastability impairment to a flash ADC
architecture. Another subsystem reports the metastability probability on the fly.

Customize Flash ADC

Extract the inner structure of the flash ADC to add customized impairment. Add a Flash ADC block
from the Mixed-Signal Blockset™ library to a Simulink® canvas. Look under the mask to find the flat
structure of the ADC. Copy and paste the complete structure to another new blank canvas.

External
@—b In1 Out1 s 2 )
r

start 4 4 ready
Clock Generator .
Binary Vector
1} Flash ADC Fault Aware i i Oul
*| Comparators *| Ones Counter . -
analog ] digital
Flash Comp Func Flash Output Logic Output Data Type

Delete the Clock Generator block because it is not used to provide the start conversion clock. An
external Stimuli subsystem is used for that purpose. The flash ADC now consists of three major
components:

* Flash ADC Comparators

* Fault Aware Ones Counter

* Output Data Type

) »( 2 )

start . ready
p| FlashADC o] Fault Aware .

C) "] Comparators "] Ones Counter »ind outt [—»{(_1 )

anale I digital

2-2

Flash ADC Comparators

An N-bit flash ADC uses 2™¥"** comparators in parallel. The Flash ADC Comparators subsystem itself
is based on MATLAB® code. Before the simulation starts, the comparators calculate the individual
reference voltages and store them in a vector. On every specified edge, the input is compared to the
references using MATLAB's ability to compare vectors. This generates thermometer code similar to
the real flash ADC, without the lag from N individual comparator blocks in the model.

To create a 10- bit ADC, set Number of bits (nbits) to 10, Input Range to [-1 1], and INL Vector
to 0. Trigger type is kept at its default value Rising edge.



Effect of Metastability Impairment in Flash ADC

Fault Aware Ones Counter

The Fault Aware Ones Counter subsystem implements the impairments in the flash ADC architecture.
Real ADCs handle conversion from thermometer to binary through logic circuits. This subsystem
takes the sum-of-elements of the vector stored by the comparators and applies that sum to a lookup
table to simulate missing codes, otherwise known as bubbles.

Set the Fault Aware Ones Counter parameters: Number of Bits (nbits) to 10, Input Range to [ -1
1], and Bubble Codes to [ ]. Trigger type is kept at its default value Rising edge.

Output Data Type

The Output Data Type subsystem handles conversion from the data type at the output of the Fault
Aware Ones Counter to the data type specified on the mask of the Flash ADC.

Break the library link between the Output Data Type block and its reference library. Set Input
dynamic range to [-1 1] and Bipolar data type to double.

Implement Metastability Probability as an Impairment to Flash ADC

To add metastability impairment, place a triggered subsystem with a MATLAB function block after the
Flash ADC Comparators subsystem. The MATLAB function block sets thermometer code signals to
NaNs with a probability from a uniform random number generator. The block resets the signals on the
next relevant edge which is why a triggered subsystem is used. Use this code to implement the
Metastability Impairment subsystem.

function y = metastability(u, Probability)

mult = ones(size(u));

mult(rand(size(u)) < Probability(1l)) = NaN; % metastability = NaN
y =u .* mult;

end

o® o of o° o°

A
Trigger

?

" 4 v
Probability metastability out

prabability

MATLARB Function

Provide the metastability probability that you want to implement through a constant block connected
to the Probability port.
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ADC ouput

2-4

(1} P isnan P Inc Count Cnt

Implement Measuring Metastability Probability

To measure metastability impairment, count the number of NaNs encountered and divide that by the
number of total comparator outputs generated during the complete simulation. A simple Simulink
implementation of metastability probability measurement is:

Measuring metastability probability

Count
—Flnc Up Cnt

Ready signal

Up

v

-|+

1
metastability probability

probability

Counter1

Counter2

The Inports are:
» ADC output- Receives the output digital code generated by the flash ADC.

* Ready signal- Receives the ready signal which represents the rate at which the digital conversion
is taking place. The digital code gets generated at each rising edge of the signals received by
'Ready signal' port.

Simulation for Metastability Measurement

The model below combines the customized flash ADC with its output connected to the metastability
probability measurement system. In the model, you have a 10-bit flash ADC with metastability
probability of 1e-6 added. The Stimuli subsystem generates an analog signal of 100 Hz and a start
conversion clock with a frequency of 100 MHz. The ADC operates at the rate defined by the start
conversion clock frequency. A dashboard scope provides the behavior of the probability number over
time. A display block shows the current probability being measured by the subsystem. You must run
the simulation for a long enough period to see the probability number settled at the desired value, in
this case le-6.

NBits=10;

modell="'flashAdc metastability.slx';
open_system(modell);
open_system([bdroot,'/Time Scope'l]);
sim(modell);
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Flash ADC with metastability impairment

Measuring metastability probability

Stimuli

: ]

FlashADC 102
n

Fault Aware

Convert to N »l Count .
ut == ones Courter [ fsna Ine =y Cnt

Bipolar ‘double’ “ADC oulpe B

analog signal Comparators | oz

D a =
" [ N
Flash Comp Func Metastabilty Impairment  Fiasn Dt Logic Output Data Type S - Imetastability probability
4 LIE stant conversion clock 3 Count
Sampling Clock Source | ne "y Cnt

Counter2

Tirne Scope
File Tools Wiew Simulation Help &

@- BOP® | &-|a-|[-FH-

metastability probability

it
e SR S

PN

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Aeady Sample based T=0.100

Effect of Metastability on Dynamic Performance of ADC

You can observe the effect of metastability on the dynamic performance of ADCs. The model shows
two setup of flash ADC systems: one with metastability and the other without. A postprocessing block
that takes in the impaired digital output and converts the NaNs to zeros. This is because the digital
output with NaNs cannot be recognized by a spectrum analyzer as valid signal for spectral analysis.
Attach an ADC AC measurement block to observe various performance metrics like SNR, ENOB,
noise floor and so on. The simulation results show the AC analysis causes a significant drop in
performance for ADC with metastability, as shown by the lower ENOB and higher noise floor.
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model2="flashAdc metastability Effect.slx"';
open_system(model2);
sim(model2);

—|ADC oulput  ADC digital code | digi AC Measurement
Conversion delay: 000 s
ost-processing black SINAD: 30.01d8
post-p ng ==y "SFOR: 66.84 dB
SNR: 30.01dB
»l ENOB: 469
T THD: -63 46 dB.
Flash ADC with metastability impairment
I ] ] S
FlashADC |1 02| Fault Avare Canvert to sampiet
analog signal C foz3] Ones Counter Bipolar ‘double’ utput
Flash Comp Func ~ Metastabllty  Flash Qutput Logic  Qutput Data Type
Impairment
with metastabiity
Stimuli "
nooo without metastability
00
S —n
Generator J_LL
samplerl
e
- start conversion clock
Sampling Clock Source|
Flash ADC without metastability impairment
l start conversion clock l
Flash ADC | 1023 Fault Aware Canvert to . AC Measurement
‘analog signal ‘Comparators 1023 Ones Counter Bipolar ‘double’ utput
Caonversion delay: 000 s
‘Output Data Typel SINAD: 60.99 0B
Flash Comp Funcl Flash Qutput Logicl ®lready  “grop’ pasedB
SNR: 61.07 dB
»l ENOB: 9.84
THD: -76.68 dB
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See Also
Flash ADC | Sampling Clock Source | ADC AC Measurement

More About
. “Analyzing Simple ADC with Impairments” on page 2-30
. “Compare SAR ADC to Ideal ADC” on page 2-47
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Design and Evaluate Interleaved ADC

This interleaved ADC model highlights some of the typical impairments introduced by data converters
and their effects on a larger system.

Model

In this example, interleave two simple ADCs based on the model “Analyzing Simple ADC with
Impairments” on page 2-30 to create the equivalent of one ADC operating at 2X the individual ADC
sampling rate. Use a two-tone test signal at 200 MHz and 220 MHz as the input to verify the
distortion introduced by the ADC operation.

model = 'interleaved adc';

open_system(model)

set param([model '/ADC 1 at 1G SPS'],'jitter','off');

set param([model '/ADC 1 at 1G SPS'], 'nonlinearity','off');
set param([model '/ADC 1 at 1G SPS'], 'quantization','off');

set param([model '/ADC 2 at 1G SPS'],'jitter','off');
set param([model '/ADC 2 at 1G SPS'], 'nonlinearity','off');
set param([model '/ADC 2 at 1G SPS'], 'quantization','off');

set param([model '/Offset Delay'l], 'DelayTime','.5/Fs adc');
set param([model '/Two Tone Sine Wave'l], 'Amplitude’,'.5"');
set param([model, '/Input Switch'], 'sw', '1');

sim(model)
| el AC Measurement
| cigi
Two Interleaved ADCs with Impairments Conversion delay: 0.00 s
SIMNAD: 0,01 dB
| ready
Copyright 2011-2019 The MathWorks, Inc .||.||. ==Y SFDR: 0.00 dB
4GHz Pulse SNR: 0.00 dB
ploo:  ENOB: 029
THD: -35.98 dB
ADC AC Measurement
-
#| 2nalog In Digital out
] Time Scape
Output
ADC_1at 1G 5P5
(Y] D e .
| : [ =
Two Tone Sine Wave - N
Input Switch © Counter
Time Scope Free-Running at 2GHz raty L
Single Tone Sine Wave Input ]
Interleavin o
W Switch Pin  Fonz— 7]
» ol - Output ADC
I‘J F|fnaoa n E el Sample Rate Sampling Rate in GHz
Measurement
Offset Delay

Fs_adc/led— 4

- Individual ADC
Fs_adc in GHz Sampling Rate in GHz

ADC 2 at 1G 5P5
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AMALYZER ESTIMATION MEASURE... SPECTRUM SPECTRAL... CHAMMEL ...
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tude-

400
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Peaks Intermaodulation Distortion
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Frequency (M

Power (dBW)

Stopped VBW = 10.9272 kHz RBW =976.563 kHz Sample Rate = 2.00000 GHz Frames = 439:

To bypass the impairments, use appropriate switch positions inside the ADC blocks. The ADC
behavior is purely ideal. The two ADCs in the top-level model are identical with the exception that the
noise generators in each ADC have different seeds to make the noise uncorrelated.

Each ADC operates at 1 GHz rate, set by the MATLAB® variable Fs adc defined in the initialization
callback of this model. The operating rate of the ADCs is indicated by the green signals and blocks in
the diagram. The input signal of the second ADC is delayed by an amount equal to half a period of the
ADC sampling frequency.

Timing Imperfection

The precision of the timing between the individual ADCs is critical. To see the effect of a timing
mismatch, open the Offset Delay block and simply add 10 ps to the delay value.

set param([model '/Offset Delay'], 'DelayTime','.5/Fs adc + 10e-12");

The 10 ps error causes a significant degradation of the ADC performance, even though both ADCs are
perfectly ideal. To compensate for the performance degradation, some form of drift compensation is
necessary. For more information, see Time-Interleaved ADC Error Correction.

sim(model)
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Effect of Aperture Jitter

Remove the fixed offset of 10 ps and enable the aperture jitter impairment in each of the ADC
subsystems.

set param([model '/Offset Delay'l], 'DelayTime','.5/Fs adc');

set param([model '/ADC 1 at 1G SPS'],'jitter','on');
set param([model '/ADC 2 at 1G SPS'],'jitter','on');

The noise around the two-tone test signal at 200 MHz is expected, as a direct result of the ADC jitter.
The additional noise around 800 MHz is the result of interleaving two uncorrelated noise sources.

sim(model)

AMALYZER ESTIMATION MEASURE... SPECTRUM SPECTRAL... CHAMNEL ...

15N

squared (dBW

tude-

400
Frequency (MHz)

Peaks Intermodulation Distortion

2F1-F2 2F2-F1 TOI I

T 1.7904e+2
1.1185e+1

Stopped VBW = 10.9272 kHz RBW =976.563 kHz Sample Rate = 2.00000 GHz Frames = 4457
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Effect of Nonlinearity

Remove the jitter impairment and activate the nonlinearity impairment in both ADCs.

set param([model '/ADC 1 at 1G SPS'],'jitter','off');
set param([model '/ADC 2 at 1G SPS'],'jitter','off');
set param([model '/ADC 1 at 1G SPS'], 'nonlinearity','on');
set param([model '/ADC 2 at 1G SPS'], 'nonlinearity','on');

The spectrum now shows 3rd order IMD products around two tones and harmonically related spurs
around the 600 MHz region.

sim(model)

AMALYZER ESTIMATION MEASURE... SPECTRUM SPECTRAL... CHAMNEL ...

400
Frequency (MHz)

Peaks Intermaodulation Distortion

TOI

Stopped VBW = 10.9272 kHz RBW =976.563 kHz Sample Rate = 2.00000 GHz Frames = 4437

Even though the ADC nonlinear effects are identical and create exactly the same odd order
components, there is actually some cancellation of terms. If just one nonlinearity is enabled, the
resulting spectrum is worse than when both ADCs are nonlinear.

set param([model '/ADC 2 at 1G SPS'], 'nonlinearity','off');
sim(model)
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Effect of Quantization and Saturation

Remove the linearity impairment and activate the quantization. The quantizer is set to 9 bits, and the
signal level is close to the full scale of +/ -1, which can be seen in the input Time Scope.

set param([model '/ADC 1 at 1G SPS'], 'nonlinearity','off');
set param([model '/ADC 2 at 1G SPS'], 'nonlinearity','off');
set param([model '/ADC 1 at 1G SPS'], 'quantization','on');
set param([model '/ADC 2 at 1G SPS'], 'quantization','on');

The spectrum shows the noise floor increasing as an effect of quantization.

sim(model)

AMALYZER ESTIMATION MEASURE... SPECTRUM SPECTRAL... CHAMNEL ...

Stopped VBW = 10.9272 kHz RBW =976.563 kHz Sample Rate = 2.00000 GHz Frames = 449(
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Multiply the two tone test signal by a factor of 1.2. The increased amplitude saturates each ADC,
producing a clipped waveform and a dirty spectrum.

set param([model '/Two Tone Sine Wave'l], 'Amplitude','.5*1.2");
sim(model)

AMALYZER ESTIMATION MEASURE... SPECTRUM SPECTRAL... CHAMMEL ...

Interleavin...

Frequency (M
Power (dBW)

Stopped VBW = 10.9272 kHz RBW =976.563 kHz Sample Rate = 2.00000 GHz Frames = 439%

ENOB, SFDR, and Other Single Tone Measurements

ADCs are often characterized by their Effective Number of Bits (ENoB), Spurrious-Free Dynamic
Range (SFDR), and other similar measurements.

These quantities are derived from a single tone test. To change the ADC's input from the Two Tone
Sine Wave source to the Single Tone Sine Wave source and back, double click on the Input Switch.
This test uses a single sine wave with a frequency of 200 MHz.

set param([model, '/Input Switch'], 'sw', '0');

The ADC AC Measurement block from the Mixed-Signal Blockset™ measures conversion delay,
SINAD (the ratio of signal to noise and distortion), SFDR, SNR (Signal to Noise Ratio), ENOB and the
ADC's output noise floor.

set param([model, '/ADC AC Measurement'], 'Commented', 'off');

This block requires a rising edge on its start and ready ports for every conversion that the ADC
makes. In this model, these are provided by a 4 GHz pulse generator. To use the ADC AC
Measurement block in this model, uncomment the block by right clicking on it and selecting
"Uncomment" from the menu. The expected ENOB from a dynamic range of 2 and a least significant
bit value (quantization interval) of 2" -8 is 9 bits.

sim(model);
disp(interleaved adc output)

SNR: 44.7989

SFDR: 58.3746

SINAD: 45.2291
ENOB: 7.2208
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NoiseFloor: -50.3029
MaxDelay:
MeanDelay:

MinDelay:

[oNoNo R

AMALYZER ESTIMATION MEASURE... SPECTRUM SPECTRAL... CHAMMEL ...

Peaks

VBW = 10.9272 kHz RBW =976.563 kHz Sample Rate = 2.00000 GHz Frames = 430¢

Stopped

Substitution of ADC Block with System object™

Open the mask dialog of both Flash ADCs in the model 'interelaved flash adc.slx' and set Simulate
using to System object (code generation).
bdclose(model);

model = 'interleaved flash adc';
load_system(model);
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[*&) Block Parameters: Flash ADC
FashADC (mask) (link)
N-bit ADC with flash architecture.

Parameters

Configuration  Impairments
Number of bits |nbits g

Input range (V) [-11] F1.17 |3
Sample Timing
Sample interval (s) |1/ (2 * Fs_adc) Se-10 | 2

Edge trigger type Rising edge

Qutput Options

Output Polarity  Auto

Output data type fixdt{OutputPolarity, NBits)

Simulate using System object (code generation)

[ oK l _ Ca_noel Help Apply

The system-object Flash ADC model is almost identical to the Simulink block Flash ADC model. But
the system object model does not support aperture jitter impairment or internal conversion start
clock. The system object model is also limited to fixed-step sample times. Generally, the system object
model will require more compile time but run faster than the Simulink block model, making it useful
for long or complex simulations. To configure the fixed-step sample rates of the ADCs, set their
Sample interval (s)to1l / (2 * Fs_adc). This is the rate at which the ADC model checks
whether or not its inputs have changed. Due to rising edge detection on the conversion start signal,
this rate should be at least twice the ADC's sample frequency. Setting Fs_adc to 1e9 and nbits to 9
in the base MATLAB workspace gives this model the same performance as the previous model.

The conversion start signal, specified in the 2x 1 GHz Pulses with 180 deg phase offset block, has the
same Sample time of 1 / (2 * Fs_adc). This is the Nyquist rate for that signal. With this Sample
time, set the Period to 2 samples, and the Pulse width to 1 sample. Set Phase delay to [0 1]
samples to output a vector containing two antiphase conversion start signals. Use the two selector
blocks to route the delayed clock signal to the top ADC and the un-delayed clock signal to the the
Interleaving Switch's initial output comes from its bottom input, input 0, and the second output
comes from the top input, input 1.

Set up the ADC AC Measurement block's parameters according to the parameters of the ADC and of
the stimulus signal. Set the Resolution bandwidth (Hz) to 2,000, 000 because the default value
20,000,000 is not enough resolution to differentiate the fundamentals.

sim(model);
open_system(model);
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Two Interleaved ADCs with Impairments

Copyright 2011-2022 The MathWorks, Inc
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See Also

ADC AC Measurement

More About

. “Analyzing Simple ADC with Impairments” on page 2-30
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Design and Evaluate Interleaved ADC Using System Object

This example shows how to use System Objects to model and evaluate the performance of an
interleaved ADC. This example is based on the AD9625 from Analog Devices.

Parametrically Describe an Interleaved ADC Core

Open the model InterleavedADCTestVec.slx. In this model, select the MATLAB System block and enter
InterleavedADC for the System object name parameter's value to associate that block with the
InterleavedADC system object included with this example. Press OK. Connect the labeled input and
output signals to the block.

model = 'InterleavedADCTestVec';
open_system(model);

|-
anal »
(\/ = | snalog digital F——
gt L
Interleaved ADC
TTTT P start ready —l—..
AEREN etart ready >

MATLAB System

Set the following parameters of the MATLAB System block to match the AD9625:

* Number of ADCs: 3

* Number of bits: 12

* Input dynamic range: [-1.2, 1.2]

The Interleaved ADC System Object will create 3 flash ADC system objects and propagate the values
of Number of bits and Input dynamic range to each of them. To specify different values for these

properties in the individual flash ADCs, go to the Advanced tab and check the Use vector
properties to set unique values for each component ADC box.

NADCs = 3;
NBits = 12;
Range = [-1.2, 1.21;

Set the sample interval of the Interleaved ADC to the number of ADCs divided by twice the sample
rate of the AD9625. This is necessary because the Interleaved ADC performs rising edge detection on
the conversion start signal and needs an additional input sample between conversion starts to detect
the conversion start signal hasn't simply been held high.

Fs = 2.5e9; % Hz
set param([model '/MATLAB System'], 'SampleInterval', 'NADCs / (2 * Fs)');

Simulate the model and observe the inputs and outputs using the scope. This model provides
individual conversion start signals to each ADC with phase offsets to make the total conversion rate
2.5 GSPS. The block outputs individual results and ready (end-of-conversion) signals for each ADC
within the interleaved ADC core.
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sim(model);
open_system([model, '/Scope']);

o

File

Ready

Tools

View Simulation Help k]

G- 4QP® = Q- & FH-
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bdclose(model);

Measure Performance of an Interleaved ADC

Open the model InterleavedADCTestbench.slx. Set up the MATLAB System block the same way, using
the properties of the AD9625:

* Number of ADCs: 3

*  Number of bits: 12

¢ Input dynamic range: [-1.2, 1.2]

This time, however, set the Sample intervaltol / (2 * Fs) and, in the Advanced tab, check the
box to Multiplex the output to a scalar. The higher sample rate allows the interleaved ADC to
multiplex its output to a scalar value, which can then be interperted by the ADC Testbench. The

interleaved ADC system object will automatically de-multiplex the scalar conversion start signal
provided by the ADC Testbench between the three individual ADCs in its core.
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model = 'InterleavedADCTestbench';
load system(model);

NADCs = 3;
NBits = 12;
Range = [-1.2, 1.2];

Fs = 2.5e9; % Hz
set param([model '/MATLAB System'], 'SampleInterval', 'l / (2 * Fs)');

Check the box to Use vector properties to set unique values for each component ADC. The
AD9625 claims different offset error values for the three variants of the converter, so choose offset
error values on the interval [-6, 6] LSB for each one. Similarly, choose the gain error from the interval
[-8, 8] %FS (percent of the full-scale range of the converter). The resulting offset error and gain error
values will be vectors with their number of elements equal to the number of individual ADCs in the
interleaved ADC core.

OffsetError = [-5 0 5];
GainError = [-7 0 7];

set param([model '/MATLAB System'], 'OffsetError', 'OffsetError');
set param([model '/MATLAB System'], 'OffsetErrorUnit', 'LSB');

set param([model '/MATLAB System'], 'GainError', 'GainError');

set param([model '/MATLAB System'], 'GainErrorUnit', '%FS');

Inside the ADC Testbench, set the Conversion start frequency to Fs, then set the Number of bits
and Input range to match the interleaved ADC. Apply these changes. Now click the Set as model
stop time button in the Stimulus tab to update the model's stop time.

set param([model '/ADC Testbench'], 'StartFreq', 'Fs');
set param([model '/ADC Testbench'], 'NBits', 'NBits');
set param([model '/ADC Testbench'], 'InputRange', 'Range');

In the Target Metrics tab of the ADC Testbench, set the target metrics to the maximum value of the
offset error and gain error vectors so that the ADC Testbench will sweep the full transfer curve.
Additionally, set the Simulation stop time to 1.5e-4 to allow enough simulation time for a
complete sweep. Check the box to Stop simulation on completion to only collect the needed data.

set param([model '/ADC Testbench'], 'TargetOffsetError', 'max(abs(0ffsetError))');
set param([model '/ADC Testbench'], 'TargetOffsetErrorUnit', 'LSB');
set param([model '/ADC Testbench'], 'TargetGainError', 'max(abs(GainError))"');
set param([model '/ADC Testbench'], 'TargetGainErrorUnit', '&FS');
set _param([model '/ADC Testbench'], 'StopOnCompletion', 'on');
(

set param(model, 'StopTime', '5e-5');
Run the simulation and observe the results by plotting INL and DNL using the button in the ADC
Testbench block mask.

s = warning('off', 'msblks:msblksMessages:synchIOMismatchedEdges');
sim(model);

warning(s);

open_system(model);

INLDNL discarded 57424 intervals that contained 75031 data points in total.
This made the analog value sets associated with codes [-2048, -2048, -2048, -2048, -2048,
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| analog digital
Interleaved ADC
| start ready M doubla
o adc analog oc 'I:;Etfench from ade digital (4
Matrics Measured  Target
Oiffzet Error (LSE) 5.28 5.00
o adc start Gain Error (%FS) 3.70 7.00 from adc ready 4
[

Plot the resulting INL and DNL using the button on the ADC Testbench block's mask. The different
offset and gain errors of the individual converters have become INL and DNL in the overall transfer

curve.
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Design and Evaluate Successive Approximation ADC Using
Stateflow

This example shows a 12 bit Successive Approximation Register (SAR) ADC with a circuit-level DAC
model.

Successive Approximation ADCs typically have 12 to 16 bit resolution, and their sampling rates range
from 10 kSamples/sec to 10 MSamples/sec. They tend to cost less and draw less power than
subranging ADCs.

Model

Open the system MSADCSuccessiveApproximation.

model = 'MSADCSuccessiveApproximation';
open_system(model)

12 Bit Successive Approximation Analog to Digital Converter
Using a Circuit Level DAC Model

Copyright 2011-2023 The MathWorks, Inc

ADC Internal Clock SAR ADC

M 140 MHz — :I E

¥ Actual vs ADC
Conversion Clock Ot
ADC_O Vref*2*-Nbit
10 MHz <Ot DG Resut | o 2 (Hbits)
1 e -

Scale Resull to Volts. = L

E

.‘-q\ 2 £oc Spectrum
Two-tone test signal \')—D{ 1 blln 4 0m|7 Scope
o +/- Full Scale=1 | | Track and Hold ==
Constanttest signal Sourcznc e Successive Approximation Logic O Outputin Vols
Input va DAC DAL 5
o 7
Analog Resat DAC Input
HJ Wraf Vref
— Circuit Level 12 Bit DAC ref
Data

I R

Ideal DAC

DAC

Set the switches to their default positions, selecting the two-tone source and the ideal DAC model.

set_param([model '/Source'l,'sw','1");
set param([model '/DAC'],'sw','0");

The top-level model consists ofa testbench and the device under test. The testbench includes the test
signal generators and the time domain scopes and spectrum analyzer for measurement purposes. The
device under test, highlighted in blue in the model, contains a Track and Hold:, a Comparator, control
logic, and charge scaled DAC.
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The test signal is either a two-tone sine wave or a constant DC level input. This test signal is sampled
and held at the ADC's output word rate of 10 MHz. The output of the sampler serves as one input to a
comparator. The second comparator input is the DAC output which is an incrementally stepped
reference level. If the output of the sampler is greater than or equal to the DAC output, then the
comparator outputs a logical 1. When this happens, the corresponding bit of the output is set to
logical 1. Otherwise, the comparator outputs a logical 0 which does not increment the ADC output
word. This single comparator is only place in the successive approximation converter where analog is
converted to digital.

sim(model);

AMALYZFR ESTIMATION  MEASUREM-- SPECTRUM SPECTRAL --

Harmonic Distortion
Out SINAD SFDR

Frequency ...

Stopped VBW = 327.816 Hz RBW = 29.2969 kHz Sample Rate = 10.0000 kHz Frames =26

Define the number of bits ( NBits ) and ADC conversion rate ( Fs ) in the MATLAB® workspace. The
ADC operating clock rate is determined from Nbits and Fs .

Nbits = 12;
Fs = 1le7;
ADC clock = Fs*(Nbits+2);

Successive Approximation Control Logic

This model uses Stateflow to model the successive approximation control logic. The state-machine
serves as a sequencer that starts by outputting a count corresponding to midscale which in this case
is 0 volts. The state-machine then performs a binary search of one bit position at a time to find the
count corresponding to the closest approximation to the sampled input signal within 12 bits of
resolution. The Init state prevents an End of Conversion (EOC) signal from being sent prior to the
first conversion.

open_system([model '/Successive Approximation Logic'], 'force')
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®
Init ] dle_Done
antry: Bit=Nbits-1; entry: Bit=Nbits-1; .
o _ . =|EOC=0; EOQC=1, {Prev_Start = Start;}
= = lE } ;v ¥
{Prev_Start = Start;} ¢ , ADC_Out=Dout: ADC_Out=Dout; -
Prev_Start = Start; Prev_Start = Start; 2
[Start==1 && Prev_Start == 0){Dout=-2"Bit;EOC=0;} 1 1 [Start==1 && Prev_Start == O{Dout=-2"Bil; EOC=0;}
Run
entry: Dout=Dout+2*Bit;
.| Prev_Start = Start;
2 1
[Contral==0}{Dout=Dout-2"Bit;}
[Control==1] .
:'.r__ oy
Y ." y 4
[Bit=0)(Bit=Bit-1;} “_ ] ABit==0]
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On a particular bit, if the comparator outputs a 1, then that bit is set. Otherwise that bit position is
cleared. Because there are 12 bits, it takes 12 clock cycles at the bit rate clock to complete the
conversion for a given input sample.

In this model, the bit rate clock denoted by block labeled ADC Internal Clock runs at 140 MHz. This
clock is 14 times faster than the sample rate clock denoted by the block labeled Conversion Clock in
the upper left corner of the model. After the control logic sequences from bit 11 down to bit 0 the
end-of-conversion (EOC) line goes high, telling the DAC circuitry to reset.

DAC Circuit-Level Implementation

The circuit-level DAC uses a multi-stage charge-scaled array of capacitors in a split-array format. This
architecture provides several advantages including reduced area or parts count, a built-in sample and
hold, low power dissipation, and a relatively small range of capacitance values as would be required
without a split-array.

There are two versions of a digital to analog converter (DAC) in this model, one at the circuit-level

and the second representing ideal DAC behavior. The ideal DAC block takes the input count and
multiplies it by

Vier B 22 [ Volts
N 212 | Clount

to generate the output comparison voltage [1].

Set the switch to enable the circuit-level DAC model. Run the model.
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set param([model '/DAC'],'sw','1");
sim(model);

AMALYSER ESTIMATION  MEASUREM--

Harmonic Distortion
Out SINAD SFDR

Frequency

Stopped VBW =327 816 Hz RBW = 29.2969 kHz Sample Rate = 10.0000 MHz Frames = 13

This particular charge-scaled array uses *Mf'”P-"' =3 binary-weighted capacitors per stage with a

total of A = 4 stages providing a total of ir\rf‘“f*"-‘!’ * K =12 bits of DAC resolution. The

binary-weighted capacitors per stage have a value of lC, QC and 4C'. The larger the capacitance
corresponds to a higher bit position within a particular stage. For example, setting the low side of the

4C capacitor high has 4 times the output voltage impact relative to setting the low side of the 1C
capacitor high.

If you change the value of the variable Nbits, the physical number of bits of the converter, you need to
modify the circuit level implementation of the DAC. The ideal DAC implementation and the control
logic are parametrized with respect to the number of bits.

open_system([model '/Circuit Level 12 Bit DAC'], 'force")
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Reset

Data
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Each stage is separated by a scaling capacitor with value 7 ~ . The scaling capacitor serves the
purpose of attenuating the output voltage of each stage's output voltage. The further the stage is
from the DAC output node, the more it is attenuated. The attenuation is 8x per scaling capacitor

which corresponds to 2"""’? aps

The three MSBs are closest to the output, bits 0, 1, and 2 while there LSBs, bits 10, 11, and 12 are
furthest away. At any given time, the DAC is in one of two modes. It is either generating an output
voltage based on a particular input count or it is being reset when the EOC line goes high. When EOC
goes high, the low side of each capacitor in the DAC is switched to ground rather than data, thus
draining the capacitors of charge in preparation for the next approximation. This effectively drains
the capacitive network of charge preparing it for the next input sample.

Measurement Testbench

The ADC Testbench block from the Mixed-Signal Blockset™ can provide a performance analysis of the
ADC.

In DC mode, the ADC Testbench tests the linearity of the ADC. The test result is used to generate
offset and gain error measurements which are displayed on the block mask. The full test results are
available for export or visualization via the buttons on the ADC Testbench block mask.

bdclose(model);

model = 'MSADCSAR DC';
open_system(model);
sim(model);
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ADC Transfer Curve (Endpoint Method)
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The AC mode of the ADC Testbench provides insight into the frequency performance of the ADC,
including measurements like the ENoB (Effective Number of Bits), the maximum measured
conversion delay, and the noise floor of the converter. These measurements are displayed on the block
icon after simulation and are available for export via a button on the block mask.

model = 'MSADCSAR AC';
open_system(model);
set param([model '/DAC'],'sw','1l");
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1 Haideh Khorramabadi UC Berkeley, Department of Electrical Engineering and Computer
Sciences, Lecture 15, page 38 <http://inst.eecs.berkeley.edu/~ee247/fa06/lectures/L15 f06.pdf>
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See Also
Sampling Clock Source | ADC DC Measurement | ADC AC Measurement

More About
. “Compare SAR ADC to Ideal ADC” on page 2-47
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Analyzing Simple ADC with Impairments

N E B P

This example shows how to implement a basic ADC using a Zero-Order Hold block as a sampler. This
simple ADC highlights some of the typical impairments introduced in an analog-to-digital converters
such as aperture jitter, nonlinearity, quantization, and saturation. This example shows how to
measure the effects of such impairments using a Spectrum Analyzer block and the ADC AC
Measurement block from the Mixed-Signal Blockset™ . To better approximate real-world performance,
you can individually enable the impairments in the model.

model = 'MSADCImpairments';
open_system(model)

Non-linearity Quantization and saturation D

Jitter

Lpo
- [
_O\.. > n/c > 3/‘}
e in =/ »o o Quantization
Non Linearity : Spectrum

mk i Aperture Jitter and Saturation Scope
ADC With Impairments
Copyright 2011-2019 The MathWorks, Inc
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To observe the behavior of an ideal ADC, bypass the impairments using the switches. Set the Sine
Wave source to generate two tones as an input signal.

set param([model '/Aperture Jitter'],'sw','1l');

set param([model '/Non Linearity'],'sw','0");

set param([model '/Quantization and Saturation'], 'sw','0');

set param([model '/Sine Wave'l, 'Frequency', '2*pi*[47 53]*1le6');

Simulate the model and observe the expected clean output spectrum of the ADC.

sim(model);
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Effect of Aperture Jitter

Set the first switch to the down position. The Variable Delay block delays the signal sample-by-sample
by the amount on its td input. The Noise Source block generates a uniform random variable, which is
low-pass filtered by the Shape the jitter noise spectrum block before it arrives at the td input to the
Variable Delay. Use a shaped uniform noise distribution to represent the jitter. Notice that in this
model, the clock of the ADC is specified in the ideal zero-order hold block, and it is equal to 1/Fs,
where Fs is a MATLAB® variable defined in the model initialization callback and equal to 1.024 GHz.

set param([model '/Aperture Jitter'],'sw','0"');
As expected, the spectrum degrades because of the presence of the jitter.

sim(model);
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Effect of Nonlinearity

Set the second switch to the up position. This enables the ADC nonlinearity. A scaled hyperbolic
tangent function provides nonlinearity. Its scale factor, alpha, determines the amount of nonlinearity
the tanh applies to the signal. By default, alpha is 0.01.

set param([model '/Non Linearity'], 'sw','1l');
The spectrum degrades because of the nonlinearity as higher order harmonics get generated.

sim(model);
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Effect of Quantization and Saturation
Set the third switch to the up position enabling the ADC quantization and hard saturation.
set param([model '/Quantization and Saturation'],'sw','1l");

The spectrum degrades because of the quantization effects. The noise floor raises as seen in the
spectrum.

sim(model);
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ADC AC Measurements

Use the ADC AC Measurement block in the Mixed-Signal Blockset™ to measure the noise
performance of the ADC and compute the effective number of bits (ENOB).

Use single sinusoidal tone as input to the ADC to measure other metrics.
bdclose(model) ;

model = 'MSADCImpairments AC';
open_system(model);

ADC With Impairments

Copyright 2011-2019 The MathWWorks, Inc
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Delay
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|
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Ftest 33/round(2*pi*2°8) *Fs;

set param([model '/Sine Wave'l, 'Frequency', '2*pi*Ftest');

scopecfg = get param([model '/Spectrum Scope'], 'ScopeConfiguration');
scopecfg.DistortionMeasurements.Algorithm "Harmonic"';
scopecfg.FFTLength = '512';

scopecfg.WindowLength = '512';
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sim(model);
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The Aperture Jitter Measurement block from Mixed-Signal Blockset™ measures the average jitter
introduced on the signal to be approximately equal to 1 ps. Delay is added

Additionally, use the spectrum analyzer to measure:

* Output Third Order Intercept Point (OIP3)
* Signal to Noise Ratio (SNR)
* Total Harmonic Distortion (THD)

Increase the factor alpha to increase the nonlinearity of the ADC and make the effects of nonlinearity
more evident on top of the noise floor. This is just for demonstration purposes.

alpha = 0.8;
Use a two tone test signal as input to the ADC for the intermodulation measurements.
set param([model '/Sine Wave'l, 'Frequency', '2*pi*[50e6 75e6]');

To enable distortion measurements in the spectrum analyzer, click on Distortion Measurement as
in the figure below and select Intermodulation as Distortion type.

scopecfg.DistortionMeasurements.Algorithm = 'Intermodulation’;
scopecfg.FFTLength = '4096"';
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scopecfg.WindowlLength = '4096";

sim(model);

AMALYSER ESTIMATION M EASUREMEMNTS SPECTRUM SPECTRAL MASK ~ CHAMMNEL MEA--
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Stopped VEBW = 543887 kHz REBW = 384.521 kHz Sample Rate = 1.05000 GHz Frames = 20858 T = 0.000199011

The scope allows for the measurement of the third order products adjacent to the input signals, and
determines the output referred third order intercept point.

See Also
Sampling Clock Source | Aperture Jitter Measurement | ADC AC Measurement

More About

. “Compare SAR ADC to Ideal ADC” on page 2-47

. “Design and Evaluate Interleaved ADC” on page 2-8
. “Subranging ADC” on page 2-36
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Subranging ADC

This example shows how to model a 6-bit Subranging ADC with pipelining and an error correcting
second stage.

Subranging ADCs are typically faster than sigma delta and successive approximation ADCs but
provide less resolution. Typical sample rates are in the 10M sample/sec range, and typical resolution
is 8 to 16 bits. Additional stages and/or bits per stage yield higher resolutions.

ADC Model

The subranging ADC is a two stage data converter. The first stage converter is a 3-bit Flash ADC. It
drives a 3-bit ideal DAC, which in turn drives the second stage. The second stage converter is 4-bit
flash ADC. The extra bit corrects the errors in the first ADC and improves conversion accuracy. The
sampling rate of the ADC is 100 MHz, and is defined in the model initialization callback by MATLAB®
variable Fs. Additional MATLAB® variables N1, N2, and NBits set the number of bits for the first
stage, second stage and overall converter respectively.

The model is based on the following Analog Devices tutorial: ADC Architectures V: Pipelined
Subranging ADCs.

The first ADC serves as a coarse 3 bit converter. The quantization error due to the first ADC is itself
quantized by the second ADC. To generate this error signal, a 3-bit DAC converts the coarse ADC
output to an analog signal which is subtracted against the original analog input. The difference is the
residue signal. The residue signal is amplified and converted back to a digital signal by the second
ADC. The 3 bit ADC output (MSBs) and the 4-bit ADC output (LSBs) are concatenated to form an
overall 6 bit unsigned ADC output.

model = 'subranging adc ac';

load system(model);

sc = get param([model '/Spectrum Analyzer'], 'ScopeConfiguration');
sc.OpenAtSimulationStart = false;

open_system(model);

Subranging ADC Example
Copyright 2021-2022 The MathWorks, Inc. Al rights reserved
Subranging ADC

convert

Shift the frst result from bits 0 through 2 into bits 3 through 5

The gain of the ideal DAC should be equal to 1 LSB from the MSB ADC block.
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This step input and enabled subsystem prevent the second
stage of the pipeline from starting conversions untl the first
conversion from the first stage is complete.

Dynamic Testing

This model uses one of two test sources. Use a sine wave for dynamic testing, e.g. ENoB, SNR, and
SFDR. Use a ramp signal for static testing, e.g. missing codes and nonlinearity quantifiers.
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Subranging ADC

To determine SNR, ENOB and other dynamic characteristics of the subranging ADC, use the ADC AC
Measurement block from the Mixed-Signal Blockset™. Select the correct switch position to use the
Sine Wave as input source. Set the simulation stop time using the button on the mask of the ADC AC
Measurement block and set its Distortion measurement type is set to Harmonic.

set param([model '/Source Select'],'sw','1l");

set param([model '/ADC AC Measurement'], 'InputFrequency', '10e6');
open_system([model '/Time Scope'l);

sim(model);

"y —
File Tools ‘View Simulation Help

Q- BOPE =-Qq-EH-FIH-

L o s

Time (us)

Ready

Frame based |Offset=99 T=0.0001

Add another sine wave to the input to test intermodulation distortion. Observe and measure the
results using the ADC AC Measurement block with its Distortion measurement type set to

Intermodulation.

set param([model '/Source Select'],'sw','0"');

set param([model '/ADC AC Measurement'], 'DistortionMeasurement', 'Intermodulation');
set param([model '/ADC AC Measurement'], 'InputFrequency', '[9, 11] * 1le6');
sim(model);
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“ a) | 53
File Tools View Simulation Help k]

- 0P ® =-q-EH-FF-

Ready Frame based |Offset=99 T=0.0001

Missing Code Analysis

This example uses a histogram block to plot the frequency of occurrence of each ADC output code.
Use the Sawtooth Generator block as the input source by setting the input switch to the proper
position.

close system(model, 0);

model = 'subranging adc dc';

load_system(model);

set param([model '/MSB ADC'], 'OffsetError','0');
set param([model '/MSB ADC'], 'GainError','0"');
set param([model '/Source Select'],'sw','1l");
open_system(model);
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Subranging ADC Example Subranging ADC

Copyright 2021-2022 The MathWorks, Inc. Allrights reserved. _.| convert
Shift the first result from bits 0 through 2 nto bits 3 through 5

The gain of the ideal DAC should be equal to 1 LSB from the MSB ADC block.

uabs(dififRange)) 12 - 1/ 24NBits + 1)} ister

Ampilier

‘Sampie and Hold MSB ADC

) - s
Hanaiog s
The input to the LS8 ADC is biased up by half of its | dgta
= oK) Input rango to preven negaive overlow. Iis
l > oulout is biased down by half 1o comoensate.
. 1 1 . e ooy r
L T ready

LSBADC

“This step input and enabled subsystem prevent the second
stage of the pipaling from starting convarsions until the first
conversion fro

m the first stage is complete.

Set the simulation time to 1.28e-4 s, which is 10x longer than the recomended minimum simulation
stop time from the ADC DC Measurement block. Given our sawtooth stimulus, this will cause our
entire transfer curve to be swept 10 times, increasing the accuracy of the histogram by reducing the
influence of random impairments such as aperture jitter.

set param(model, 'StopTime', '1.28e-4');
open_system([model '/ADC Output Histogram']);
sim(model);

MEASUREMENTS Sa - IO w2 )

Stopped Frames = 44

You can observe how the second stage corrects errors from the first by adding Offset error and Gain
error in the impairments tab of the MSB ADC. Any fraction of an LSB introduced as a form of gain or
offset error results in an imbalance or missing code in the ADC output histogram. Anything other
than a flat histogram with a sawtooth input signifies some amount of non-ideal ADC behavior in the
form of integral non-linearity, differential non-linearity, or missing codes.

Total errors max(abs (0ffset error + Gain error, Offset error)) of up to 0.5 LSB in the
MSB ADC are corrected by the extra bit of the LSB ADC. Larger errors in the MSB ADC and any
errors in the LSB ADC influence the output.

set param([model '/MSB ADC'], 'OffsetError', '0.2');

set param([model '/MSB ADC'], 'GainError', '0.2');
sim(model);
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° 0 D@

Stopped Frames = 28

View the results of the ADC DC Measurement block by clicking the Plot measurement results button
in the block mask.
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Value in LSB

ADC Transfer Curve (Endpoint Method)

Measured
— — — — Endpoint Fit
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Analog Input

Endpoint Nonlinearity By Code
<10"*  (Max |INL| = 1.4e-14 LSB, Max |[DNL| = 2.1e-14 LSB)

—#—— Endpoint INL
—=— Endpoint DNL

Code

ADC Testbench

Verify that the results of your tests are due only to properties of the ADC rather than of the input
signals or output processing with the ADC Testbench. Connect the inputs and outputs of the

converter to the inputs and outputs of the ADC Testbench and run the simulation. The results of the
test will show up on the block mask once you run the simulation.

close system(model, 0);

model = 'subranging adc testbench';
load_system(model);

sim(model);

open_system(model);
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Subranging ADC

Register 1

The gain of the ideal DAC should be equal to 1 LSE from the MSB ADC block,

Register 2
. Qy=Qu<<3
Subranging ADC Example convert » v,«; wE'm » 1 1 -
i [ =Eu
Copyright 2021-2022 The MalhWorks, Inc. Al fights reserved. Shift the first result from bits 0 through 2 into bits 3 through 5. ¥ ol — »

1
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W start . ready
T
Sample and Hold MSBADC L
1 1 1 4 1 analog digital
£ = The input to the LSBADC is biased up by half of its
[ 1 Input range lo prevent negative overflow. Its
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1 1 start ready
1 — L]
LSB ADC
ADC
to adc analog DC Testbench from ade digital
Meatrics Measured  Target
Offset Error (LSE) 0.00 0.00
to adc start from ad: )
. Gain Error (LSB) 000 0.00 e ready
£

Copyright 2021 The MathWorks, Inc. All rights reserved.

See Also

Flash ADC | ADC Testbench | ADC AC Measurement | ADC DC Measurement

More About
. “Analyzing Simple ADC with Impairments” on page 2-30

. “Effect of Metastability Impairment in Flash ADC” on page 2-2
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Measuring Offset and Gain Errors in ADC

This example shows how offset error and gain error are calculated and how each affects the transfer
curve of an ADC. Offset error and gain error characterize part of the linearity error in an ADC.

Offset error is the difference between the center of the least significant code and the center of the
same code on an ideal ADC with the same number of bits. Offset error is usually reported in units of
the least significant bit (LSB) of the converter. One LSB is equivalent to the converter's quantization
interval.

Gain error in LSB is the difference between the center of the most significant code after offset error
correction and the center of the same code on an ideal ADC with the same number of bits.

Due to the difficulty in determining the precise location of the center of a code with a non finite
boundary, these values are most commonly measured with respect to the first and last threshold of
the converter, respectively.

Units for Offset Error and Gain Error
The unit L.5 15, which is used in this example, is defined as:

FSR
1[LSB] = N

Thus, an error in V' (volts) translates into L5 as follows:

\(7.9R] < oV _E1V]
E [LSB] = 2% FSRIV]

where IS is the full scale range of the ADC and Vit is the number of bits of the ADC.
Linearity errors are also commonly reported in normalized units with respect to the full scale range:

f‘.1,|":-lr f scd :1 ]
FSR[V]

Iﬂu;’;’”a

Another unit sometimes used for linearity errors used is percent full scale. Percent full scale is
defined as normalized units multiplied by 100:

yl [ 1 I.:r:l.ll.'r [1']
Eguin [%) = 100 =55+
e FSR[V]

Calculate Offset Error and Gain Error

Use a 3-bit ADC with dynamic range [-1 1]. Define an offset error of 1 LSB and a gain error of 1 LSB.

Nbits 3;

Range [-1 1]; % ADC Full Scale Range
OffsetError = 1;

GainError = 1;

LSB = (max(Range) - min(Range)) / (2”Nbits - 1);

The digital codes from the ideal ADC are identical to those from the experimental ADCs.
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[TCOAnalog, TCODigital] = og2tc(Nbits, Range, 0, 0); % Ideal ADC Transfer Curve

TClAnalog = og2tc(Nbits, Range, OffsetError, 0); % Offset Error Only
TC2Analog = og2tc(Nbits, Range, 0, GainError); % Gain Error Only
TC3Analog = og2tc(Nbits, Range, OffsetError, GainError); % Both Offset Error and Gain Error

plotAdcTcForExample(TCODigital, TCOAnalog, TClAnalog, TC2Analog, TC3Analog, Nbits);

Offset Error Only ; Gain Error Only Toffset Error and Gain Error
Offset + Gain Error
61 1 6 1 6
5 5 5
L] L] . L]
'g alt 'g 4 Gain Error 'g 4
o] o] o]
© © ©
= = =
D23t o3 o3
m] m] m]
21 Offset Error 1 2 1 2 Offset Error
1 1 1 1
l‘{ Ideal Ideal ¥ Ideal
Offset Error Gain Error Both
0 1 1 0 1 0 1 1
-1 0 1 2 -1 0 1 2 -1 0 1 2
Analog Value Analog Value Analog Value

The sum of offset error and gain error is known as full-scale error. In monopolar converters zero
error, essentially offset error defined at analog level 0, is identical to regular offset error. In bipolar
converters such as those above, offset error and zero error are different quantities.

Use of Linearity Errors as Impairments

Compare a flash ADC with offset and gain error to one with no impairments.
model = 'OffsetGainExample’;

open_system(model);

open_system([model '/Time Scope']);
sim(model);
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=

| analog digita >
Jl [] #
| start ready —=—]
]
Ideal ADC
| analog Jl H digita! >
P start ready -
Impaired ADC

analag

ADC
DC Measurement
Stan
Offset Error: 1.01 LSB
Gain Error: .99 LSB
Max INL (end-point): 0.00 LSB
digital  Max INL (best-fit): 0.11 L5B
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Max DML (best-fit); 0.05 L3B

ready
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Impaired ADC/
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The ADC DC Measurement block confirms the values of the impairments to within a margin of error
determined by the sample rate of the system. The offset error and gain error were both entered as 1
LSB. Offset error was measured as 1.08 LSB and gain error was measured as 0.97 LSB. Errors in
these measurements are due to the converter not sampling exactly at its threshold values. The
maximum expected error in LSB is:

m
!-'-l"ll r —
L I|r_,

where m is the slope of the input ramp/sawtooth signal in LSB/s, and f+ is the ADC's conversion start
frequency.

See Also
Flash ADC | ADC DC Measurement
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Compare SAR ADC to Ideal ADC

This example shows a comparison of the SAR ADC from the Mixed-Signal Blockset™ to the ideal ADC
model with impairments presented in “Analyzing Simple ADC with Impairments” on page 2-30.

This model compares SAR ADC and an equivalent ideal ADC model. To scale the integer output of the
SAR ADC to match the floating point output of the ideal ADC, use an output gain and offset. For the
comparison to be valid, both ADCs must sample their inputs and then provide their outputs
concurrently.

The ideal ADC model is composed of a Quantizer block, a saturation block and a Zero-Order Hold
block. The quantization interval is set to be 1 LSB of the SAR ADC. The limits of the saturation block
match the SAR ADC's Input range parameter, [ -Vref Vref] / 2. The Zero-Order Hold and both
Sample and Hold blocks sample at Fs, though they do so at differnt times.

The SAR ADC outputs an unsigned, 16-bit integer. The minimum value of the converter's output is 0
and maximum value is 2~ NBits - 1. This is less than the maximum value of the integer as long as the
integer has more bits than the converter. The Bias and Scale Results to Volts blocks scale the former
integer onto the same range as the converter input and the output of the ideal ADC, by default -
Vref / 2toVref / 2.

model = 'SARIdealCompare’;
open_system(model);

digia —>|:|—> refi2 Nbits) —In SH » | ‘
/ sar_out —

rmady >

.

+i- Full Scale=1

Tt >
N ey >

Conversion
Clock

L

T S <(;\h

y _ ; SAR_out |;|
N 4,_]_,;" J‘LL . . N
— ideal_out deal_out idealADC_out

Copyright 2018 The MathWorks, Inc

The Time Scope block shows the difference between the two outputs on the left and the two outputs
themselves on the right.

open_system([model '/Time Scope'l);
sim(model);
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ESTIMATION MEASUREMENTS SPECTRUM SPECTRAL MASK ~ CHAMMEL MEASUREMENTS
idealADC_out

1Vims=Full Scale) (dEWY)

m
=
=
(=1
m
=

Frequency (MHz)

SAR_out THD

Stopped VBW = 5.00000 MHz RBW = 14.6628 kHz Sample Rate = 10.0000 MHz Frames = 2630 T = 0.00143670
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=
File Tools View Simulation Help

- QP | @ |- F -

sar out, ideal out

Feady

Offzet=0.001 T=0.002

The Spectrum Analyzer block shows the spectra of the two outputs.
close system([model '/Time Scope']);

open_system([model '/Spectrum Analyzer']);
sim(model);
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ESTIMATION MEASUREMENTS SPECTRUM SPECTRAL MASK ~ CHAMMEL MEASUREMENTS (] u [
idealADC_out

1Vims=Full Scale) (dEWW)

m
=
=
(=1
m
=

Frequency (MHz)

SAR_out THD

Stopped VBW = 5.00000 MHz RBW = 14.6628 kHz Sample Rate = 10.0000 MHz Frames = 5084 T = 0.00143530

You can substitute the Flash ADC for the SAR ADC in this model to measure its performance.

See Also
SAR ADC | Flash ADC

More About

. “Design and Evaluate Successive Approximation ADC Using Stateflow” on page 2-22
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ADC Linearity Measurement Using Histogram

Statistical measurement of ADC Linearity is popular in physical systems due to its noise tolerance
and relative simplicity of implementation in a physical environment. This example covers problems
inherent to statistical linearity measurements and some possible solutions for implementing these
measurements in Simulink®.

The Model

A histogram-based linearity measurement can be broken into five sections:

aua A W N =

Stimulus
Device Under Test (DUT)
Preprocessing

Histogram Computation

Linearity Measurement

The problems inherent to the statistical method occur primarily in the Stimulus and Preprocessing

sections. The stimulus signal needs to be uniform over the ADC's input to give a flat histogram for an
unimpaired converter, while the preprocessing needs to ensure that exactly one period of the
stimulus is binned by the histogram at a time.

Alternatively, the stimulus frequency can be nonuniform but the histogram must be manipulated
using the PDF of the nonuniform input so as to remove the influence of the nonuniformity on the

result.

s = warning('off"',
model = 'histogramLinearityExample';

open_system(model);
set param([model '/Flash ADC'],

'Simulink:blocks:DivideByZero');

Copyright 2018 The MathWorks, Inc.

'"EnableLinearityImpairments’,

‘off');

Histogram Linearity Measurement Example

Stimulus DUT Preprocessing
noon
L] # u-0.5 * abs(diff{Range)) / 2*Mbits P analog digital B double — E B 4
latch_on
TTTT - start ready »—
NENEN —
|
Linearity Measurement Histogram Binning
] Endpaoint INL o +—| 1l s Jup "
I I — Il
n» HistZDNL T
outADCIML outADCDMNL (- Full Scale DML out ADCHistogram -
DMLZINL
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The sawtooth stimulus frequency automatically adapts to different combinations of simulation
runtime and converter number of bits.

|.i".rll.'r|.|' 1..-Hln;ll| !'-:ﬂ.'rl_,'n'ﬂ }

l".-w.rl.ll'.'r.ulh'l = max { Va2V )

" LI'-’-'.I-'

T,

Viwar and Vinin are defined in Range, T+» is defined in the model parameter StopTime, £ swmde is

defined by Fs and Vi« is defined by Nbits. Fample/2 serves to prevent a frequency of 0 in the
case of a non-finite simulation time. Otherwise, the sawtooth period takes the entire simulation time.

Buffering

In this model, the samples are buffered separately from the histogram computation for two reasons.
First, it is important that the histogram updates at an integer multiple of the stimulus period. This
ensures that the histogram has the correct shape. Second, the number of samples per period of the
sawtooth stimulus is dependant on its frequency and the frequency of the conversion start signal,
which is the sampling frequency. Therefore, the number of samples to buffer is the sample frequency
divided by the sawtooth frequency.

_ er.'.'.fa'-'
Fiu utooth

The buffer block causes its own problem while ensuring histogram uniformity. The initial output of the
buffer is passed to the histogram at the start of simulation, effectively a buffer full of zeros all
determined by an initial condition.

model3 = 'histogramInitialCondition';
load_system(model3);
%sopen_system([model '/Histogram']);
out=sim(model3);
plot(out.ADCHistogram, '-rd');

grid on;

title('Histogram');
ylabel('Amplitude');



ADC Linearity Measurement Using Histogram

iy 104 Histogram

Amplitude
a3 o
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The resulting histogram is corrupted by the massive spike at 0, due to the propagation of the initial
condition.

The MATLAB Function block in the Histogram section keeps the histogram disabled until the next
buffer, the first one filled with simulation data, arrives at the histogram. Therefore, this prevents the
final histogram from being dependent on initial conditions.

open_system(model);

set _param([model '/Flash ADC'], 'EnableLinearityImpairments', 'off');
out=sim(model);

plot(out.ADCHistogram,'-rd");

grid on;

title('Histogram');

ylabel('Amplitude');
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Input Uniformity
A ramp or sawtooth input provides a linear sweep of all of the values over the ADC's dynamic range.

However, due to threshold placement in ADCs, an ideal ADC's transfer curve is not centered in its
dynamic range; the ideal transfer curve is left shifted by 0.5 LSB. Therefore, the first threshold is at
0.5 LSB and the last threshold is 1.5 LSB lower than the maximum dynamic range. Compensate for
this effect by adding a -0.5 LSB bias to the stimulus.

More severe problems occur with converters that have large offset and/or gain errors. Specifically, if
the offset error is lower than -1 LSB or the full scale error (the sum of offset and gain error) exceeds
1 LSB, some codes at the bottom or top of the transfer curve (respectively) will be measured as
missing, regardless of their actual functionality. Knowing this, statistical linearity measurement
techniques should only be applied after offset and gain errors have been corrected.

set param([model '/Flash ADC'], 'EnableLinearityImpairments', 'on');
set param([model '/Flash ADC'], 'OffsetError', '3');

set param([model '/Flash ADC'], 'GainError', '2');
%sopen_system([model '/Histogram']);

out=sim(model);

plot(out.ADCHistogram, '-rd');

grid on;

title('Histogram');

ylabel('Amplitude');
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To measure the full transfer curve of an ADC with large offset and/or full scale errors in Simulink®,
use the ADC DC Measurement block or the ADC Testbench. Configuration of the stimulus to cover the
whole ADC transfer curve will not effect these blocks' results the way it will effect the histogram.

model2 = 'flashWithTestbench';

open_system(model2);

set param([model2 '/Flash ADC'], 'EnableLinearityImpairments', 'off');
set param([model2 '/Flash ADC'], 'OffsetError', '3");

set param([model2 '/Flash ADC'], 'GainError', '2');

sim(model2);

msblks.ADC.adcDcMeasurementPlot([model2 '/ADC DC Measurement']);

| analog
ADC
DG Measurement
| start
Offsat Error: 0.00 L5B
ouT Gain Emor: -0.00 L5B
klax IML (end-point): 0.00 LSB
P u-0.5 * abs(diff{Range)) / 2*Mbits | analog digital | digithlax INL (best-fit): 0.00 L5B
Mazx DML (end-point): 0.00 LSB
Max DML (best-fit): 0.00 LSB
ﬂ-ﬂ- | start ready B ready
bl b —
i
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ADC Transfer Curve {Best Linear Fit Method)
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Linearity Measurement

With the input and preprocessing conditions met, the histogram provides an excellent visual

representation of the linearity of the data converter. A set of mathematical operations applied to this
histogram yield measurements for both DNL and INL.

set param([model
set param([model
set param([model

set param([model
set param([model
set param([model

'/Flash ADC'], 'EnableLinearityImpairments', 'on');

'"/Flash ADC'], 'OffsetError', '0.25');
'/Flash ADC'], 'GainError', '0.25');

'/Differential Nonlinearity'], 'Commented', 'off');
'/Integral Nonlinearity'],'Commented', 'off');
'/Histogram'], 'Commented', 'off');

open_system([model '/Differential Nonlinearity']);
open_system([model '/Integral Nonlinearity'l]);
open_system([model '/Histogram']);

sim(model);
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MEASUREMENTS
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open_system([model '/Hist2DNL']);

%
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Mormalized Histogram Mumber of
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LSB

INL is subsequently computed from DNL.

open_system([model '/DNL2INL']);
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Endpoint INL computed in this manner is equivalent to the endpoint INL computed by the ADC DC
Measurement block, though the ADC DC Measurement block does not report full scale DNL.

open_system(model2);

set param([model2 '/Flash ADC'],
set param([model2 '/Flash ADC'],
set param([model2 '/Flash ADC'],
sim(model2);

msblks.ADC.adcDcMeasurementPlot ([model2 '/ADC DC Measurement']);

'"EnableLinearityImpairments’,
'OffsetError', '0.25');
'GainError', '0.25');

‘on');
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ADC Transfer Curve {Best Linear Fit Method)
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warning(s.state, 'Simulink:blocks:DivideByZero');
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Oversampling Interpolating DAC

This example shows how to model a 12-bit Oversampling Interpolating DAC.

Oversampling Interpolating DACs use interpolation to achieve a higher resolution output than
provided on their input. This allows less complicated output filtering for a DSP system operating close
to its Nyquist rate.

Model

The oversampling interpolating DAC has three basic functional blocks. The first block is an FIR
Interpolation filter block from the DSP System Toolbox™ to increase the sample rate from the input
sample rate of Fs to the DAC's sample rate of M * Fs. The second block is a MATLAB Function block
that handles unbuffering the output of the FIR Interpolation block. The MATLAB Function block has a
clock-triggered nature which allows its output to have jitter. This gives it advantage over the Unbuffer
block from the DSP System Toolbox™. The third block is a Mixed-Signal Blockset™ DAC operating at
M * Fs.

The parameters of the DAC are from the AD9773 datasheet.
The workspace variable parameters:

* Fin = 66.176 kHz is the input signal frequency.

* Fs = 1.125 MHz is the input sample frequency.

* M = 8isthe oversample factor/ratio.

* N = 12 is the number of bits of the DAC.

+ Ref = 1.2 isthe reference (dynamic output range) of the DAC.

The DAC sample frequency is determined by the oversample factor and the input sample frequency:

F. =M -F,=9MH:

For simplicity, Offset error and Gain error have been left at @ %FS in this model.

model = 'InterpolatingDAC';
open_system(model);
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Interpolating DAC
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Dynamic Testing

To determine SNR, ENOB and other dynamic characteristics of the interpolating DAC, use the DAC

Copyright 2020 The MathWorks, Inc.

AC Measurement block from the Mixed-Signal Blockset™.

Use the Spectrum Analyzer to compare the low-sample rate input to the output of the oversampled
interpolating DAC. The gain block next to the Spectrum Analyzer matches the input wave to the

amplitude of the DAC's output for side-by-side comparison.

sim(model);
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Static Testing

To determine offset error, gain erro
Offset error of the Binary Weighte

1.0 %FS (40.96 LSB).

bdclose(model) ;
model = 'InterpolatingDACDC";
open_system(model);

r, INL and DNL use the DAC DC Measuremen t block. Set the
d DAC to -0.02 %FS (-0.8192 LSB) and set its the Gain error to

2-65



2 DC Featured Examples

oooo
12:34 _/_ > x[nva] T »| cigital
Input i
F L
3

2-66

L A J

h J

gital

¥

| convert
Interpalated

ana DAC
“ Dutput h DC Measurement

Binary-Weighted
DAC

¥

P start

]

h 4

analog

‘Copyright 2020 The MathWorks. Inc.

A summary of the measurements is reported on the block icon. Open the block mask and press the
Plot button to view the full INL and DNL plots.

sim(model);

mask = Simulink.Mask.get([model '/DAC DC Measurement'l]);

button = mask.getDialogControl('PlotBtn');

eval(regexprep(button.Callback, ‘'gcb',['""' model '/DAC DC Measurement"']));
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Design and Evaluate Segmented DAC

This example shows how to design and evaluate a segmented DAC using reference architecture and
validate the DAC using the DAC Testbench. For this example, use the datasheet of AD9775. This is a
commercial, off-the-shelf 14-bit DAC from Analog Devices.

Set Up Segmented DAC Testbench Model

Open the model SegmentedDACTestbench attached to this example as a supporting file. The model
consists of a Segmented DAC block and a DAC Testbench.

model = 'SegmentedDacTestbench';
open_system(model);

CAC
AC Testbench

h

to dac digital dagital
SIMNAD: B5.56 dB
from dac analog SFDR: 8320 dB Segmented DAC  analog
SMR: B5.98 dB
EMOB: 13.02 te dac start
Moise floor: -161.76 dBm

b Sattling time: 6.22 nz

Start

Y

Copyright 2020-2022 The MathWaorks, Inc.

Segmented DAC Block

The Segmented DAC block is composed of a number of segments, wired in parallel. These segments
are each fed by a subset of the input data word. The results of the conversions from each segment
DAC are summed to get the output for the full input word.

open_system([model '/Segmented DAC'], 'force');
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The Logical Vector Conversion block splits the input word into its component bits. Inside each
segment a Selector block picks the subset of the input word for that segment and another Logical
Vector Conversion block converts it back to a scalar value for the segment DAC to convert. The
individual segment DACs are Binary Weighted DAC blocks. Their parameter settings are set during
model initialization by the Segmented DAC block. Finally, the segments' outputs are added and scaled
to the reference of the Segmented DAC block.

Double click the Segmented DAC block to open the Block Parameters dialog box. Use the table in the
center to set parameters of individual segments of the DAC. The effects of the table parameters on
the overall operation of the DAC are summarized in the bottom right corner.
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E Block Parameters: 'ngmznl:cl:l DAC x
Segmented DAC (mask) (link)

A sagmentad DAC is an arrangement of smaller DACs working together to corvert a larger input word. This Block
currently supports up to 5 Binary-Weighted segment DACs.

FParameters
Input polarity  Unipalar W

EA use external start clock

Segment settings
Binary Weighted 5 3.25 L5B 3 L5B
LSBE
Binary Weighted 4 0 LSB LSB
Binary Weighted 3 0 LS8 023 LS8 i
¥
MSE
New Segment Duplicate Selected Delete Selected
Reference (V) 12 Segment-derived parameters
Bias (V) 0 Total number of bits 14
Sattling time (£) :115-9 Lie0s |; Total offset ermor (083 %FS ~
Total gain error Qo WFS

Settiing time tolerance (LSB) |0.025

Cancel Help Apply

The Input polarity is set Unipolar, the Reference (V) is set to 1.20 V, the Bias (V) issetto 0V,
the Settling time (s) is set to 11e-9 s, and the Settling time tolerance (LSB) is set to 0.025 LSB
based on the datasheet.

In the Segment settings table insert a row to have three rows to define a three-segment DAC
architecture. Set the Bits of the top and bottom rows to 5 and the Bits of the middle row to 4. This
sets the LSB segment (specified by the top row) and the MSB segment (specified by the bottom row)
to each be a 5-bit DAC while the middle segment is a 4-bit DAC. Set the Offset error and Gain Error
fields for all segments to 0. Click anywhere in a row or Shift+Click on multiple rows in the table to
select them. When a row is selected, use the buttons on the right side of the table to move it up or
down in the table changing where its segment is in relation to the input word. The top row's segment
always converts the LSB and the bottom segment always converts the MSB. Use the buttons below
the table to add or remove segments.

Measure DC Performance Metrics Using Endpoint Method

Double click the DAC Testbench block to open the Block Parameters dialog box. The Measurement
option is selected as DC. Set the Start conversion frequency (Hz) to 65e6 Hz. In the Setup tab,
click the Autofill setup parameters button to automatically propagate the DAC parameters to the
testbench. Set the Settling time (s) to 11e-9 s to ensure the DC measurement results are not based
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on the transitions between codes. In the Target Metric tab, click the Autofill target metric button
to automatically propagate the DAC target metrics to the testbench. Apply the changes. Set the
Recommended min simulation stop time (s) as model stop time by clicking the Set as model
stop time button.

Run the simulation for 5.042 ms.

bdclose(model);

sim(model);

The measured offset and gain errors displayed on the icon of the DAC Testbench are within the Error
tolerance (LSB) of their expected values.

YHFS =

100 - Ersni

10
= — = L0061 EFS

2."-'-_-. '_E'H
(1.1
DC Testhanch 1o dac digis
S P —— Meirics Measured Target
Offset emor(%FS) 0.02 0.0z s el et
Gain arolHFS) 100 0899 FEG .
]

L 4

dagital

start

Segmented DAC

analog |-

Double click the DAC Testbench block to open the Block Parameters dialog box. Click the Plot DC
analysis results button to view the DAC transfer curve, endpoint nonlinearity and best fit

nonlinearity.

DAC Transfer Curve (Endpoint Method)

15000

[=1
[=]
[=1
[=]

O

— — — — Endpoint Fit

Measured

Diigital Input

w
=]
=
=

0.4 0.6 0.8 1 1.2
Analog Cutput
Endpoint Nonlinearity By Code
(Max |INL| = 30 LSB, Max |DNL| = -31 LSB)

Value in LSB

——%—— Endpaint INL
il ——— Endpoint DNL
S S

AL

o 2000

Measure AC Performance Metrics Using a Single Tone
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Double click the DAC Testbench block to open the Block Parameters dialog box. Set the
Measurement option as AC . In the Stimulus tab, Start conversion frequency (Hz) is set to 65e6
Hz to allow the DAC's output to settle between conversions. In the Setup tab, click the Autofill
setup parameters button to automatically propagate the DAC parameters to the testbench. Apply
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the changes. Set the Recommended min simulation stop time (s) as model stop time by clicking
the Set as model stop time button.

set param([model '/DAC Testbench'], 'MeasureOption', 'AC');

Open the Segmented DAC block parameters dialog and set the Offset error and Gain error entries
in the Segment settings table to 0 for all segments. This prevents the linearity impairments from
affecting harmonic performance.

tablestr = "{'Binary Weighted', '5', '0', 'LSB', '0', 'LSB'; " + ...
"'Binary Weighted', '4', '0', 'LSB', '0', 'LSB'; " + ...
"'Binary Weighted', '5', '0', 'LSB', '0', 'LSB'}";

set param([model '/Segmented DAC'], 'SegmentSettings', tablestr);

Run the simulation for 9.5 us.

set param(model, 'StopTime', '9.5e-05');
sim(model);

The harmonic distortion measurements are displayed on the icon of the DAC Testbench.

DAL
&G Testhench

digital

L 4

1o dac digis
SINAD: 85 56 dB
Trorn dac anakog SFDR: 93.20 dB Segmented DAC  analog |-
SMR: B5.98 dB
EMOB: 13.92 ta dac ssart = start
MNaise Aoor: -161.76 dBm
Sollling time: 6,22 ns

=
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Compare Binary Weighted DAC to Ideal DAC

IJ_LlDSP

This example shows a comparison of the Binary Weighted DAC from the Mixed-Signal Blockset™ to
an ideal DAC model.

This model compares the Binary Weighted DAC and an equivalent ideal DAC model. For the
comparison to be valid, both DACs must sample their inputs concurrently. The parameters (reference,
bias, sampling frequency, number of bits) of both the Binary Weighted DAC and the ideal DAC are
derived from the TLC5615 datasheet.

The ideal DAC model is composed of a Sample and Hold block, Gain block, Bias block and Data Type
Conversion block. The Sample and Hold ensures input data enters the DAC at the correct rate (Fs)
even if the digital input signal was sampled at some other rate. The Gain block scales the digital word
to an analog scale and the Bias block applies a bias to match the output of the Binary Weighted DAC.
The Binary Weighted DAC uses its reference parameter as its full scale output range, thereby making
its throughput gain equivalent to Ref / (2”NBits - 1).The Data Type Conversion block ensures
the output data type matches the Binary Weighted DAC.

The Binary Weighted DAC outputs a scalar double. The outputs of both the Binary Weighted DAC and
the ideal DAC produce values on the interval [ -Ref, Ref - 1 LSB] / 2.

model = 'BinDacIdealCompare’;

h 4

¥
¥
Yy

floor

Sine Wave
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open_system(model);
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The Scope block shows the difference between the two outputs on the left and the two outputs
themselves on the right.

open_system([model '/Time Scope'l);
sim(model);


https://www.ti.com/lit/ds/symlink/tlc5615.pdf

Compare Binary Weighted DAC to Ideal DAC

AMALYZER ESTIMATION MEASUREMENTS SPECTRUM SPECTRAL MASK  CHANNEL MEAS... w o e

Channel 1 2

Channel 1 THD SINAD
Frequency

Power (dBm)

Rel

Stopped VBW = 16.7842 mHz RBW =1.00000 Hz Sample Rate = 10.0000 kHz Frames =9268 T = 1.00313
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The Spectrum Analyzer shows the spectra of the two outputs. The Spectrum Analyzer requires fixed-
step sampled inputs, which the Zero-Order Hold blocks perform at the same rate that the DAC

performs conversions, Fs.

close system([model '/Time Scope'l);
open_system([model '/Spectrum Analyzer']);
sim(model);
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Delta Sigma Modulator Data Converter with Half-Band Filter
for Decimation

2-78

This example shows how to use the Delta Sigma Modulator (DSM) data converter building block with
a downstream decimation filtering scheme to be used for an Analog-to-Digital converter (ADC)
application. DSMs use oversampling technique which results in the phenomenon of noise shaping by
which the in-band quantization noise is strongly attenuated. In general, the noise transfer function
(NTF) is given by

NTF = (3

LM z)

where N is the order of the DSM and D(z) is the denominator polynomial to be designed. The
procedure to systematically design a realizable NTF is explained in [1].

The sampling rate Fs in a DSM is typically much greater than the Nyquist rate. The ratio of Fs to
Nyquist rate is called Oversampling Ratio (OSR) given by:

O5h =

Fa . -
o 1

where Fb is the highest frequency content (bandwidth) of the input signal.

DSM output is at the high rate of Fs. Decimation filters are used to reduce the data rate to the
Nyquist rate (i.e. 2xFb) and filter the data stream. DSM and the decimation filter together comprise
the DSM ADC. This example goes through the case of a DSM using 1-bit quantizer, but it is not
uncommon to design DSMs with multi-bit quantizers. In [1], SQNR for a second order single bit
modulator is shown empirically to be close to 75dB, resulting in an Effective Number Of Bits (ENOB)
of 11 bits as explained in the next section. Theoretical SNR calculation of a DSM has been explained
in [2].

Design Flow
A typical design flow for modeling a DSM for a specific application is as follows:

1) Design an NTF to achieve a given system specification. The order N depends on the required
SQNR and the denominator polynomial D(z) is designed to increase the modulator stability at high
frequencies by reducing the gain (low-pass behavior) at high frequencies. (In this example we try to
achieve SQNR of 70dB by choosing a 2nd order DSM with OSR = 64. ENOB for this case is 11.3 bits
using the expression given below.

SN R—1.761 1)

ENOE = 6020

2) Choose a DSM structure that provides the best trade-off for the given specifications e.g., quantizer
saturation vs. input signal range. A CIFB structure is chosen in this example.

3) Design the decimation filter to be used in conjunction with the DSM to build a DSM ADC. The
decimation filter bit-width is chosen to be an integer greater than or equal to ENOB.

4) Run time-domain simulation of the model and check its performance (DSM output spectrum, SNR,
etc.)
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5) Add impairments to see if specifications are still met or if the architecture needs to be modified.
Few key impairments for DSM are switched-capacitor kTC noise, switched-capacitor clock jitter,
amplifier thermal noise, etc.

SQ Codec

2nd order CIFB DSM

Simulate DSM ADC

To simulate the DSM ADC example, open the model "DSM_Decimation filter" attached to this
example:

open_system('DSM Decimation Filter.slx');

—
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An analog input (sine wave of 990Hz) stimulus is over-sampled by the DSM block and is converted
into a digital bit-stream. Specification for the DSM block is shown below:

1) Sampling Frequency (Fs) = 128KHz 2) Bandwidth (Fb) = 1KHz 3) Over Sampling Ratio (OSR) = 64
Delta Sigma Modulator

DSM block from the Mixed-Signal Blockset is a masked subsystem containing variant subsystems to
define different DSM architectures and orders. Using the block you can select out of 4 different
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architectures with orders ranging from 2 to 6. Hence, a total of 20 different architectures can be
modeled. DSM architectures can be classified as:

1) CIFB: Cascade of Integrators, Feedback
2) CRFB: Cascade of Resonators, Feedback
3) CIFF: Cascade of Integrators, Feedforward
4) CRFF: Cascade of Resonators, Feedforward

The coefficients 'a’, 'g', 'b' and 'c' for the generalized DSM structures can be determined using the
procedure explained in chapter 4 in [1]. The gain coefficients in this example were obtained using the
functions provided in the Delta Sigma Toolbox by Richard Schreier [3].

Decimation Filter

A decimation filter serves two purposes: 1) Filter the out-of-band noise 2) "Decimate" the DSM output
data rate from Fs to the Nyquist rate 2xFb = (Fs / OSR).

For efficiency of implementation, a decimation filter is implemented as a cascade of digital filters
instead of a single stage. In this example, the decimation filter is designed to have an alias
attenuation of > 100 dB and < 0.1 dB of passband variation. Since the OSR of DSM is 64, a
decimation factor of 64 is implemented. The filter comprises a cascade of 5 sinc filters each with a
decimation factor of 2, a compensation FIR filter to compensate for droop in the sinc filters, followed
by a half-band filter. The order and gain of the sinc filters are mentioned in Table 14.2 in [1]. See
chapter 14 in [1] for a detailed discussion of Decimation Filter design.

Half-band filter is a low pass filter which reduces the maximum bandwidth of sampled data by one
octave. In this example, half-band filter has been implemented using FIR Decimation block with the
filter coefficients obtained by using the DSP System Toolbox function 'firhalfband' as shown below:

firhalfband('minorder', 0.45, 1E-05);

sinca_2decil
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sinc4_2deci sinc5_2deci sinc8_2deci sinc14_2deci COMP FIR
Halfband

Alternatively, decimation filter can also be implemented using an FIR Decimation block (from DSP
System Toolbox) with the decimation option set to 64 in the mask. More information on FIR
Decimation block can be found on the documentation page for dsp.FIRDecimator.

Simulation Results

The ADC model with 2nd order CIFB DSM block was simulated with a sinusoidal signal at 990Hz
(very close to Fb). DSM output (128Ksps) is fed to a Spectrum analyzer to analyze power spectrum of
the ADC output and the spectrum shows a spike at 990Hz as expected.
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The input to the decimation filter gets decimated by a factor of 64. The data rate is equal to 2Ksps,
since OSR = 64. Spectrum of the decimation filter output (2ksps) is shown below with a spike at
990Hz.
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Additional simulation was run with an input frequency of 50Hz and the DSM ADC output for this
sinusoidal signal is captured.

The ADC output was fed to an "ADC AC measurement" block to check the performance of the DSM
ADC. Both filter outputs ("FIR Decimation" and "Cascade of sinc filters") show an ENOB = 11 bits as
expected.
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Digital Timing Using Solutions to Ordinary Differential
Equations

3-2

This example shows how to model a three stage ring oscillator using models defined by ordinary
differential equations (ODE).

This example is the third of three examples that use a three stage ring oscillator model to explore the
range of options for simulating the analog applications of digital circuits. The delays in each stage
determine the ring oscillator's output frequency, making the accurate modeling of these delays
essential to the simulation of the circuit.

The first two examples in the sequence, “Logic Timing Simulation” on page 3-12 and “Digital Timing
Using Fixed Step Sampling” on page 3-7, contain background information about this example.
Read them first, in sequence, if you have not already done so.

This model uses blocks defined by ODEs, and depends on the services of an ODE solver. For each
stage, the zero crossing detection capabilities of a Compare To Constant block are used to produce a
saturated input to the inverter. The inverter output is converted from Boolean to double to drive a
Transfer Function block. The Transfer Function block defines the shape of the inverter output
transitions.

Load the ODE-based model and update the model to display sample times.

open_system('OdeWaveform');
set param(gcs, 'SimulationCommand', 'update');
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Continuous Time Model Using Exponential Decay

In this section, use a single pole response to evaluate the ring oscillator output when the inverter
output is modeled as the response of an RC circuit.

For this section, the Transfer Function blocks are configured for a single pole response. The pole for
one of the logic stages is set to a slightly different value than for the other two stages so that the
model will enter the correct mode of oscillation.

The solver selection is set to auto, with a Relative Tolerance of 1e-9.

Run the ODE-based model with the single pole rise/fall response.

sim('OdeWaveform');
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Continuous Time Model with Nearly Constant Slew Rate

In this section, model the response of the ring oscillator stages using a continuous time Transfer
Function block with a fourth order Bessel-Thompson response to approximate a constant slew rate
response.

Set the configuration for the fourth order Bessel-Thompson rise/fall response.

den = getBesselDenominator(3e9);

set param('OdeWaveform/Transfer Fcn','Denominator',mat2str(den));
set param('OdeWaveform/Transfer Fcnl', 'Denominator',mat2str(den));
den = getBesselDenominator(3.1e9);

set param('OdeWaveform/Transfer Fcn2', 'Denominator',mat2str(den));

Run the modified ODE-based model. Note the slight rounding of the onset of the switching edges,
similar to the waveforms produced in the “Digital Timing Using Fixed Step Sampling” on page 3-7
example.

sim('OdeWaveform');
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Continuous Time with Solver in Auto Mode
In this section, change the solver configuration and observe the change in results.

For circuits which are adequately described by linear, time invariant models, the combination of fixed
step and variable step discrete sample times, as described in the Combined Fixed Step and Digital
Timing section may be the simplest way to get reliable results. However, for circuits which must be
modeled by a nonlinear or time-varying model, the ODE-based solution is the only viable option. In
such cases, you should vary the maximum error tolerance, maximum step size or choice of solver in
the solver configuration dialog and compare the results to the behavior you expect.

Maintain the model configuration of the previous section but change the solver's Relative Tolerance
from le-9 to auto.

set param('OdeWaveform', 'RelTol"', 'auto');

Run the model with the auto solver setting. Observe both the change in period of oscillation and in
wave shape.

sim('OdeWaveform');
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“Logic Timing Simulation” on page 3-12
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Digital Timing Using Fixed Step Sampling

This example shows how to model a three-stage ring oscillator using a combination of fixed step and
variable step discrete sample times.

This example is the second of three examples that uses a three-stage ring oscillator model to explore
the range of options for simulating the analog applications of digital circuits. The delays in each stage
determine the ring oscillator's output frequency, making the accurate modeling of these delays
essential to the simulation of the circuit.

The first example in the sequence, “Logic Timing Simulation” on page 3-12 contains background
information about this example. First read that example if you have not already done so. After
completing this example, you can move forward with the “Digital Timing Using Solutions to Ordinary
Differential Equations” on page 3-2 example.

For each stage of the ring oscillator, the Logic Decision block converts the input into a saturated
variable step discrete signal and the Slew Rate block converts the output to an analog fixed step
discrete signal. Some delay in the Logic Decision block is unavoidable; however most of the delay is
introduced by the Slew Rate block.

The Logic Decision block generates a variable step discrete sample at its output in response to any
threshold crossing it detects at its input.

For a fixed step discrete input sample time, the threshold crossing time is determined by linear
interpolation between the two most recent samples. The output sample is delayed by one sample
because the block does not have access to the fixed in minor step services of an ODE solver. In the
modeling of a circuit, this delay must represent either the delay of input stages in a multi-stage
transistor circuit or RC transmission line routing delay.

For a fixed step input, the precision of the threshold crossing time reported by the Logic Decision
block depends on the ratio of the spectral content of the signal to the Nyquist frequency defined by
sample rate. For a sine wave at 0.25 times the Nyquist frequency (8x oversampling), the maximum
error in the reported threshold crossing time is 1% of a sample interval. For 0.1 times the Nyquist
frequency, the maximum error is 0.15% of a sample interval. For applications requiring greater
precision, such as evaluating low level phase noise at the output of a PLL, an approach that depends
only on variable step sampling may produce more precise results.

For a variable step input, the output of the Logic Decision block is delayed by the minimum delay
parameter for the block.

The Slew Rate block implements a linear time invariant transfer function that can be applied to either
a variable step or fixed step input signal, producing a fixed step discrete output signal with a sample
time that was set by the Slew Rate block. The delay of the Slew Rate block is a mixture of:

* Constant delay such as might occur in a multi-stage transistor circuit or RC routing delay

* Nearly constant slew rate such as would be typical of a saturated transistor driving a capacitive
load

* Exponential decay such as would be typical of an RC circuit
Load the mixed analog/digital model and update the model to display sample times.

open_system('AnalogWaveform');
set param(gcs, 'SimulationCommand', 'update');
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Slew Rate Block in Default Sampling Mode

In this section, use the Default sampling mode of the Slew Rate block to model the response of a
circuit whose slew rate is nearly constant, such a saturated transistor driving a capacitive load.

For this section, the Slew Rate blocks are configured to their Default sampling mode, which
maximizes the portion of the delay due to nearly constant slew rate (saturated transistor) and
minimizes the delay due to constant delay or exponential decay.

The delay for one logic stage is set to a slightly different value than for the other stages so that the
model enters the correct mode of oscillation.

Since the model contains no differential equations, the solver is Variable Step Discrete.

Note in the response that the onset of the switching edges is slightly rounded. In a real circuit, this
would typically be due to the RC response of the routing.

Run the mixed analog/digital model with default sample times.

sim('AnalogWaveform');
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Slew Rate Block in Advanced Sampling Mode

In this section, use the Advanced sampling mode of the Slew Rate block to model circuits whose
response is primarily a decaying exponential.

Choose the Advanced mode for the Slew Rate block sampling and set the Maximum frequency of
interest to a value that is high enough to make the delay of the Slew Rate block due primarily to
exponential decay. This choice also minimizes the delay of the Logic Decision block.

Note in the response that the onset of the switching edges is relatively sharp.
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Configure the mixed analog/digital model to approximate single pole response.

% Slew Ratel

set param('AnalogWaveform/Slew
set param('AnalogWaveform/Slew
set param('AnalogWaveform/Slew
set param('AnalogWaveform/Slew
% Slew Rate2

set param('AnalogWaveform/Slew
set param('AnalogWaveform/Slew
set param('AnalogWaveform/Slew
set param('AnalogWaveform/Slew
% Slew Rate3

set param('AnalogWaveform/Slew
set param('AnalogWaveform/Slew
set param('AnalogWaveform/Slew
set param('AnalogWaveform/Slew

Ratel'
Ratel'
Ratel'
Ratel'

Rate2'
Rate2'
Rate2'
Rate2'

Rate3'
Rate3'
Rate3'
Rate3'

’
’
’
’

'DefaultOrAdvanced', 'Advanced');
'MaxFregInterest', '20e9');
'RisePropDelay', '92e-12"');
'RiseTime', '15.5e-11");

'DefaultOrAdvanced', 'Advanced');
'MaxFregInterest', '20e9');
'RisePropDelay', '92e-12"');
'RiseTime', '15.5e-11");

'DefaultOrAdvanced', 'Advanced');
'MaxFregInterest', '20e9');
'RisePropDelay', '95e-12"');

'RiseTime', '16e-11");

Update the diagram to show the revised sample times in the sample time legend.

set param(gcs, 'SimulationCommand', 'update');

Run he mixed analog/digital model with emphasized one pole response.

sim('AnalogWaveform');
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More About
. “Logic Timing Simulation” on page 3-12
. “Digital Timing Using Solutions to Ordinary Differential Equations” on page 3-2

3-11



3 Mixing Analog and Digital Signals Featured Examples

Logic Timing Simulation

3-12

This example shows how to use the Variable Pulse Delay block to create accurate timing models of
logic circuits.

This example is the first of three examples that use a three stage ring oscillator model to explore the
range of options for simulating the analog applications of digital circuits. The delays in each stage
determine the ring oscillator's output frequency, making the accurate modeling of these delays
essential to the simulation of the circuit. This first example shows how to produce digital waveforms
with accurate timing by using variable step discrete sampling.

The second and third examples both show how to produce analog waveforms with accurate shape and
timing. The “Digital Timing Using Fixed Step Sampling” on page 3-7 example shows how to model the
three stage ring oscillator using a combination of fixed step and variable step discrete sample times.
The “Digital Timing Using Solutions to Ordinary Differential Equations” on page 3-2 shows modelling
the three stage ring oscillator using models defined by ordinary differential equations (ODE). You
should study this example before studying the other two.

The delays in this model are introduced by the Variable Pulse Delay blocks from the Utilities library of
the Mixed-Signal Blockset™, with the delay defined by a separate input to the block. The initial
output values for the Variable Pulse Delay blocks are set to guarantee oscillation. The initial output
values for two of the blocks are kept at the default value of zero while the initial output for the third
block is set to one.

The oscilloscope is configured to display the samples as a scatter graph, with no rendering between
samples. Different sample times make different assumptions about the signal value between samples
such as:

» Zero Order Hold (ZOH) — The signal value is assumed to equal the value of the most recent
sample.

* First Order Hold (FOH) — The signal value is assumed to vary linearly from one sample to the
next.

* Nyquist limited — The signal is assumed to have zero spectral content above a frequency equal to
one half of a fixed sample rate.

» Taylor series — For each major sample step, an ODE solver produces a polynomial that
approximates the signal value over that time interval.

The oscilloscope block bases its rendering on these assumptions. You must focus on the samples
themselves and understand explicitly the assumptions that different sample times make.

The samples displayed on the oscilloscope show a single sample for each logic switching event. These
samples are generated by the Variable Pulse Delay blocks. Every time a Variable Pulse Delay block
receives a sample, it generates a new event at a time equal to the sample time plus the value at the
delay input port.

As indicated by the sample time color coding, the output sample time for the inverters is Fixed In
Minor Step (FIM). This means that each inverter produces an output sample value for every major
sample time in the model, regardless whether or not that sample time is used at an input port of the
gate.

This FIM behavior is typical of most logic blocks; however you should pay special attention to sample
time propagation in triggered subsystems such as D flip-flops. If the trigger input uses a fixed step



Logic Timing Simulation

discrete sample time, then any input which is not synchronous with that sample time may not be
processed correctly. The triggered subsystem can be forced to operate in FIM mode by triggering it
with a variable step discrete trigger such as would be produced by the Variable Pulse Delay block or
the Logic Decision.

Since the model does not contain any differential equations, the solver is Variable Step Discrete.

The Stage Delay is set to 100 ps, resulting in a half period of precisely 300 ps and a period of 600
ps, as demonstrated in the simulation output.

Load the logic timing model and update the model to display sample times.

open_system('LogicTiming');
set param(gcs, 'SimulationCommand', 'update');
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Run the logic timing model.

o

)
5.

sim('LogicTiming');
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More About
. “Digital Timing Using Fixed Step Sampling” on page 3-7
. “Digital Timing Using Solutions to Ordinary Differential Equations” on page 3-2
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Circuit Design Details Affect PLL Performance

This example shows how to use the Linear Circuit Wizard block to evaluate the effect of loop filter
circuit design details on the performance of a phase-locked loop.

Analog circuit imperfections such as circuit element limitations, element value variations, layout
parasitics, and device noise can all measurably affect system-level performance. To release a system
design for production, you need to evaluate the effects of these analog circuit design details to
confirm that the manufactured system meets its performance requirements. For linear, time-invariant
analog circuits, the Linear Circuit Wizard block can help by directly solving the detailed circuit
equations and packaging the solution in the form of behavioral blocks that will execute efficiently in a
Simulink® model.

Open the model PL1AnalogCircuitExample attached to this example.
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The model defines an integer-N single modulus PLL using the basic building blocks from Mixed-
Signal Blockset™. The loop filter for the PLL is designed using the Linear Circuit Wizard block. For
more information on the PLL model, see “Phase Noise at PLL Output” on page 1-2.

The PLL Testbench supplies a reference input signal for the PLL. This reference signal is modulated
by a PRBS6 phase modulation that is used to measure the closed loop phase noise transfer function of
the PLL. The input spectrum is evaluated by a spectrum estimator.

The output spectrum is measured both by the PLL Testbench and by a spectrum estimator like the
one used to measure the input spectrum.

The model includes an oscilloscope to measure the PLL loop lock time.

Initial System Design

The chosen loop filter design is a third order passive loop filter, R2 = 1.33 kQ, R3 = 17 kQ, C1 =
13.1pF, C2 = 144 pE and C3 = 0.941 pF [1].
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Third order passive loop filter

The other primary loop design parameters are:

* Reference frequency: 30 MHz

* Prescaler divider ratio: 70

* VCO sensitivity: 100 MHz/V

* Charge pump output current: 1 mA

The primary circuit impairments are:

* VCO phase noise
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Circuit Design Details Affect PLL Performance

* Charge pump imbalance: 0.1 mA
* Charge pump leakage: .01 mA
* Reference PRBS6 modulation peak level: -60 dBc/Hz

To create the loop filter block, start by creating or obtaining a SPICE netlist description of the circuit.
This example uses a third order passive loop filter defined in the SPICE netlist file
3rdOrderLoopFilter.sp. This netlist includes the independent current source Icp to define a
current input port and a .print statement to define a voltage output port.

* Third order passive loop filter

* for preliminary system definition
Icp N1 O

C1 N1 0 13.1p

R2 N1 N2 1.33k

C2 N2 0 144p

R3 N1 N3 17k

C3 N3 0 0.941p

.print V(n3 0)

In the Linear Circuit Wizard block parameters dialog box, set the Circuit design name to '3rd
Order Passive', Block name to 'loop filter', and Netlist file name to
'3rdOrderLoopFilter.sp'. Click the Parse netlist file and redefine ports button.

The Port Definition and Device Noise Generators tabs become visible after the netlist has been
parsed. Review the content of the Port Definition tab to confirm that the port definitions are correct.

Click the Plot transfer functions button and review the resulting plot.
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3-20

Click the Build/modify block button and connect the resulting loop filter block between the output
of the charge pump and the VCO control voltage.
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In the configuration of this model, the charge pump impairments are activated. Therefore, the charge
pump defines a fixed step discrete sample time to drive the loop filter. Enabling the impairments also
provides the level of detail needed in the later stages of development, at the cost of increased
simulation run time. If the charge pump impairments are disabled, then the loop filter can be
configured to provide its own sample time. However, a lowpass resampler, such as that used in the
Loop Filter block, is required to convert from the variable step discrete sample time of the charge
pump without impairments to the fixed step discrete sample time of the loop filter.

Run the simulation.
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To plot the PLL output spectrum, you can use the plotP110utputSpectrum helper script attached
to this example. The resulting figures highlight the spurious responses at 30 MHz intervals due to the
charge pump imbalance, and the output spectrum due to the reference phase modulation. You can
create simulations that highlight other effects by modifying the level of these and other impairments.
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PLL Output Spectrum

20 .
0
m
=
g -20
L
=
é" -40
]
c
ih}
& -60
™
£
o -80
CL
¥
-100 |
-120 ]

2.05 208 207y 208 209 21 211 2.12 2.13 2.14
Frequency (Hz) x10°

Add Device Noise
Add to the simulation the effect of device noise in the loop filter.

Enable and control the addition of device noise to the PLL model using the Device Noise
Generators tab in the Linear Circuit Wizard block parameters dialog box. For Circuit Element R2
and R3, select Enable device noise generator and set the Corner frequency (Hz) to 10000 to
include a flicker noise corner frequency of 10 kHz.

As soon as you change the definition of the block, for example by enabling device noise, the block
mask displays a warning message indicating that the generated block does not reflect the latest
changes. Apply the latest changes to the generated loop filter block by clicking the Build/modify
block button. The warning message is removed and the block now includes the addition of the device
noise.

Click the Plot transfer functions button. The transfer functions now include the transfer function
from each device noise source to the output of the loop filter.
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Re-run the simulation to include the effect of device noise in the results. To get a clearer evaluation of
the effect of the device noise, set the charge pump current impairments to zero while leaving the
charge pump impairments enabled, and disable the VCO phase noise. However if you do so, then set
the charge pump impairments back to their original value and enable the VCO phase noise for the
later sections of this example.

Practical Circuit Design

Detailed circuit designs that include the effects of circuit element limitations and layout parasitics
typically only become available late in the development of a product. At that time, you should
incorporate the detailed circuit design of critical components into the system model to confirm that
the as-designed system is ready for production.

As a simple example of the types of circuit effects that should be included in the detailed as-designed
model, add a charge pump output impedance of 10 kQ and a VCO control voltage input impedance of
100 kQ to the third order passive filter model.
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Third order passive loop filter with input/output impedances

The associated SPICE netlist, as supplied in the file 3rdOrderCPLoading. sp is:

* Third order passive loop filter
* with charge pump output impedance
Icp N1 O

Rs N1 0 10k

Cl1 N1 0 13.1p

R2 N1 N2 1.33k

C2 N2 0 144p

R3 N1 N3 17k

C3 N3 0 0.941p

R1 N3 0 100k

.print V(N3 0)

This schematic and netlist also illustrate an important principle when multiple circuit blocks are to be
cascaded. You can cascade multiple linear circuit blocks created by the Linear Circuit Wizard block.
The accuracy of your result depends on the accuracy of the modeling of circuit loading at both the
input and output of each circuit block.

To evaluate the effect of loop filter circuit loading, change Netlist file name to
'3rdOrderCPLoading.sp' in the Linear Circuit Wizard parameters dialog box and click the Build/
modify block button.

Plot the resulting transfer functions.
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Re-run the simulation to include the effect of circuit design details in the results.

The shape of the loop acquisition response has changed. There are more cycle slips during loop
acquisition, but much less overshoot. The resulting lock time remains approximately the same as the
lock time for the initial system design. Further, there is significantly more noise in the steady state
loop filter output, and the additional noise appears to have a more or less constant amplitude.
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Plot the PLL output spectrum using the plotP110utputSpectrum helper script. The primary impact
of the circuit loading is a substantial increase in the spurious responses.

PLL Output Spectrum
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PLL Output Spectrum
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Enhanced Circuit Design

In this loop filter design, the last RC section of the loop filter with loading is replaced by a Sallen and
Keye active filter. This circuit design introduces a pair of resonant poles with a modest Q factor.

0.941pF
17kQ | 17kQ
AL, -
lep < 10kQ—= 1.33kQ L p -
13.1p 0.941pk: V|:-)r|nt1
Ta4pF

Fourth order active loop filter

The associated netlist, as supplied in the file 4thOrderActiveFilter.sp, is:

* Fourth order loop filter with Sallen and Keye output section
Icp N1 0 le-3

Rs N1 0 10k

C1 N1 0 13.1p

3-28



Circuit Design Details Affect PLL Performance

R2 N1 N2 1.33k

C2 N2 0 144p

R3 N1 N4 17k

C3 N4 N3 0.941p

R4 N4 N5 17k

C4 N5 0 0.941p

E1 N3 0 LAPLACE N5 N3 6.3e7/6.3e4 1
.PRINT V(N3)

The operational amplifier in this circuit is represented as a voltage controlled voltage source. The
open loop response of this amplifier is modeled using the LAPLACE keyword and the expression "
6.3e7/6.3e7 1". This expression describes a rational transfer function with a numerator equal to
6.3e7 and the denominator (s+6.3e4). In other words, the amplifier has an open loop DC gain of
1000 and a pole at 10 kHz. This syntax can readily describe transfer functions with more poles and
Zeros.

In the Linear Circuit Wizard block parameters dialog box, set Circuit design name to '4th Order
Active' and Netlist file name to '4thOrderActiveFilter.sp'.

Plot the transfer functions. Although the low frequency response closely resembles the response of
the passive filter with loading, the high frequency response rolls off much more rapidly.
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Click the Build/modify block button. The text on the block icon changes to match the revised circuit
design name.
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Re-run the simulation to evaluate the effect of the active loop filter on the PLL system performance.
The loop acquisition response is similar to those for the other cases studied but the loop filter output
is much smoother.

Plot the PLL output spectrum using the plotP110utputSpectrum helper script. The output
spectrum reflects the improvements to the system performance. Specifically, the out-of-band spurious
responses are dramatically reduced and the in-band response remains essentially unchanged.
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PLL Output Spectrum
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See Also
Linear Circuit Wizard

Related Examples
“Phase Noise at PLL Output” on page 1-2
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“Analyze T-Coil Circuit” on page 3-33
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Analyze T-Coil Circuit

This example shows how to use the Linear Circuit Wizard block to analyze a T-coil impedance
matching circuit and generate S-parameter data from the result.

The T-coil circuit is used in many applications to impedance match a capacitive load, such as an
electrostatic discharge (ESD) protection device, over as broad a frequency band as possible [1], [2].
You need to include the effects of a T-coil circuit in the model of any broadband or microwave channel
that uses it. Depending on the application, you may insert the transfer function of the circuit into a
model of the channel or insert the S-parameters of the circuit into the RF analysis of the channel.

This example analyzes the T-coil circuit shown in this schematic diagram. Capacitor Ce is the
capacitor to be impedance matched [3]. The schematic includes the equivalent circuits for two S-
parameter ports. For more about S-parameter ports, see the S-Parameters section of the example.

Port 1 Port 2

90 | o) Too g, L9
360pH | 240pH +

l lv1 Va

— |
C. I 300fF el

The file TCoil. sp contains the SPICE netlist for the T-coil circuit.

* SPICE netlist for T-coil example

* The circuit itself

Ra 2 34

La 3 4 360e-12

Cb 2 6 15e-15

Kab La Lb 0.4

Ce 4 0 300e-15

Lb 4 5 240e-12

Rb 56 2

* Create an S-parameter port by driving with a voltage source

* and load resistor, and then measure the voltage and current
* at the circuit end of the load resistor.

*

* Port 1 definition

Vi10

R1 1250

.print V(2 0) I(V1)
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* Port 2 definition
V2 7 0

R2 6 7 50

.print V(6 0) I(V2)
.end

Open the TCoil model. The model contains the Linear Circuit Wizard that you can use to create
Linear Circuit blocks for the T-coil circuit and a baseline circuit without impedance matching. The
model also contains a test setup used to compare the pulse response of the T-coil circuit to the
baseline circuit. The time scope from the DSP System Toolbox library is used rather than the scope
from the Simulink library because its rendering of the waveforms is smoother in this application.

open_system('TCoil.slx");

Limear
Clircuit
Wizard
_____ 1
i- """""""""" ]
! T mmmm T
i L e S — i
1
NN “"+ L__-h D
1
1
-
N » i
i S =
1
0 F--x ==

Copyright 2020 The Math\Works, Inc.
Select the Linear Circuit Wizard block. In the block mask or the Property Inspector, set the Circuit
design name to 'T-Coil' and the Block name to 'with T-coil'.

Parse the SPICE netlist for the T-coil circuit by clicking the Parse netlist file and redefine ports
button. The Port Definition and Device Noise Generators tabs become visible in the block
parameter dialog box. If desired, review the port settings and device noise settings.

Display the frequency response of the T-coil circuit by clicking the Plot transfer functions button.
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Vprintl | Iprint2 ', Vprint3 | Iprint4 |

Gain (dB}
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Frequency (Hz)

1012

Build a Linear Circuit block for the T-coil circuit by clicking the Build/modify block button. Connect
the block into the lower channel in the model. The active input port is V1 and the active output port

is Vprint3.
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This example compares the T-coil circuit against a baseline circuit without impedance matching. The
baseline circuit is a shunt capacitor connected to two S-parameter ports. The file NoTCoil.sp
contains the SPICE netlist for this circuit.

* SPICE netlist for T-coil example
* The load parasitic capacitance without matching circuit

Ce 4 0 300e-15

* X X X ¥

Port 1 definition
Vi160

Rl1 14 50

.print V(4 0) I(V1)
* Port 2 definition
V2 7 0

R2 4 7 50

.print V(4 0) I(V2)
.end

Create an S-parameter port by driving with a voltage source
and load resistor, and then measure the voltage and current
at the circuit end of the load resistor.

Return to the Linear Circuit Wizard block. In the block mask or the Property Inspector, set the
Circuit design name to 'Shunt C', the Block name to 'no T-coil', and the Netlist file name
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to "NoTCoil.sp'. Parse the netlist for the shunt capacitor circuit by clicking the Parse netlist and
redefine ports button.

Display the frequency response of the shunt capacitor circuit by clicking the Plot transfer functions
button. The response of the shunt capacitor falls off much faster at high frequencies than the
response of the T-coil circuit.

lprint2 ".I lprint4 " Vprintl "l.lﬂ.f'printB ‘1

-10 1

-15 ¢

Gain (dB)

-20

-25

-30 —
Frequency (Hz)

Build a Linear Circuit block for the shunt capacitor by clicking the Build/modify block button.
Connect this block into the upper channel in the model. The active input port is V1 and the active
output port is Vprint3.
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Copyright 2020 The MathWorks, Inc.

Run the simulation. In this scope display, the yellow trace is the pulse response of the shunt capacitor
without impedance matching and the blue trace is the pulse response of the T-coil circuit.

Although the T-coil circuit introduces a little delay, the resulting pulse response is more desirable for
data transmission, with a flat top and more compact rising and falling edges.
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S-Parameters

The Linear Circuit Wizard defines ports as being either input or output and as being either voltage or
current. In contrast, S-parameters are expressed in terms on incoming waves and outgoing waves at
each port, based on an assumed transmission line impedance at each port. You therefore need some
specific assumptions and some conversion to obtain S-parameters for a linear circuit.

The example makes these assumptions:

Each port is connected to a source/load impedance of Z0 (typically 50 Q).

2 Each port is driven by an independent voltage source driving a resistor whose value is equal to
the source/load impedance. This voltage source is an input voltage port.

The voltage at each port is available as an output. This is a voltage output port.

The current flowing through each source/load resistor is available as an output. This is a current
output port. In the context of the SPICE netlist, this current is measured by the independent
voltage source that defines the input voltage port.

Given these assumptions, you can transform the port node voltages and currents into incoming and
outgoing waves to produce S-parameters. Given incoming wave voltage " and outgoing wave voltage

e at a port with characteristic impedance £, and remembering that the port current is defined as
an output current of the circuit, the port voltage and port current are:

0=y -+ Uy

. 1y i,
5 — J

Ly Ay
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3-40

Solving these equations yields the resulting waves:

1 — Zgi

"
2

v+ L4

¥

iy

The S parameter matrix is then a matrix of outgoing wave amplitudes divided by incoming wave
amplitudes.

The netlist TCoil. sp satisfies this set of assumptions for S-parameter Port 1 through the following
group of statements:

* Port 1 definition
Vi1ao

R1 1250

.print V(2 0) I(V1)

V1 defines the voltage input port and R1 is the source/load resistor. The .print statement defines a
voltage output port from node 2 to the return node and a current output port whose output is the
current flowing through the voltage source V1.

A similar set of statements defines S-parameter Port 2.

You can calculate the S-parameter data by first defining a desired frequency scale and then using the
generateSParameterData helper function. Parse the netlist of interest and then click the Export
poles and zeros button. Obtain the S-parameter data from DC to 100 GHz in 1 GHz steps.

freq = (0:100)*1e9;
[data,errmsg] = generateSParameterData('TCoil/Linear Circuit Wizard',freq);

The resulting data structure is directly compatible with the S-parameters object and the rfwrite
function in the RF Toolbox™.
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T-Coil S-Parameter Gains
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See Also
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Related Examples
. “Circuit Design Details Affect PLL Performance” on page 3-16
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Design Inverting Amplifier

This example shows how to model an inverting amplifier circuit using the Operational Amplifier block
and the Linear Circuit wizard block.

Inverting Amplifier

The inverting amplifier circuit contains an op-amp and a feedback network consisting of passive
resistors. In this example, the Linear Circuit Wizard block is used to model the feedback network. The
Linear Circuit Wizard uses a SPICE netlist describing the feedback stage from the output of the op-
amp to its input.

Open the model Inverting Amplifier attached to this example.

open_system('Inverting Amplifier');

3-42
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Wizard
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Operational Amplifier

The op-amp used in this example is a double pole circuit defined from the circuit parametes. In this
example, the Input offset voltage (V) is set to 0, the Output resistance (Ohms) is set to 80, and
the Open loop gain (v/v) is set to 855e3. The Unity Gain Bandwidth (Hz) is 1e8 Hz and the
Maximum Tail Current (A) is 100e-6.
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Linear Circuit Wizard

The Linear Circuit Wizard block uses a SPICE netlist to generate a linear circuit block. You can
specify the SPICE netlist file name and click on the Build/modify block button to create a circuit
block that models the SPICE netlist. The netlist attached to this example is InvertingAmplifier.sp.

Operation

The inverting amplifier circuit is designed with an Op-amp and a feedback network consisting of two
resistors R2 and R1.

R>

VD uT

The feedback from Op-amp output to the input terminal is modeled in the attached SPICE file (R2 =
20KOhms, R1 = 2KOhms).

The closed loop gain of the inverting amplifier is -R2/R1, which is equal to -10. The input stimulus
applied to this model has a sample rate of 1e-8. The same sample rate is used in the operational
amplifier.

An input signal of 0.1V sine wave with 1KHz frequency is provided to the circuit model. The input and
corresponding output are seen on the scope.
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See Also
Linear Circuit Wizard | Operational Amplifier
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Model Comparator with Hysteresis Using Operational Amplifier

This example shows how to model an analog comparator with hysteresis using the Operational
Amplifier block from Mixed-Signal Blockset.

Comparator

An analog comparator is used to compare two analog signals and output a digital signal that indicates
which signal has a higher/lower magnitude. An example would be to detect an undervoltage condition
in which case the signal to be compared is applied to the negative input terminal of the comparator.
When Vin is below Vref, the comparator output is high indicating an undervoltage condition. A high-
gain operational amplifier is generally used as an analog comparator.

Vin ) =
: Vout
Vref <+ |
5V

Need For Hysteresis

Any noise on the input signals results in multiple transitions at the output as shown below. This is not
ideal since the block that expects the comparator output might oscillate between states.

H

Time [seconds)

Vout

Time [$econds)
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3-46

A comparator with hysteresis is used to avoid the issue of multiple transitions in the presence of
noise. Hysteresis sets different thresholds for low-to-high and high-to-low transitions using positive
feedback. The reference design explained in "Comparator with Hysteresis Reference Design" by
Texas Instruments [1] is modeled in this example. The reference design uses the component TLV3201,
a comparator from Texas Instruments. The circuit schematic of the reference design is shown below.
Positive feedback using resistive network is used to generate two different thresholds, thereby
providing hysteresis behavior. The signal is connected to the negative input terminal and hence the
output goes high when the signal is below threshold (VH or VL). The resistor Rh sets the hysteresis
level.

Sl
o

5V
x%
o

VH or VL= AN
éf

Vin

Vout
b

A
Y

VL VH Vin

When the comparator output is at logic high (5V), Rh is in parallel with Rx, raising the threshold
voltage (VH) to 2.7V. The input signal must be greater than VH=2.7V for the output to transition to
logic low (0V). When the comparator output is at logic low (0V), Rh is in parallel with Ry, reducing the
threshold voltage to 2.3V. In this case the input signal must be smaller than VL=2.3V for the output to
transition to logic high (5V).

Comparator With Hysteresis Using Simulink Blocks

The comparator explained in the previous section can be modelled in Simulink using the Operational
Amplifier block. To model the circuit exactly as shown in the previous section, you can use the Linear
Circuit Wizard as explained in the “Design Inverting Amplifier” on page 3-42 example. Although the
exact schematic cannot be modeled in Simulink using the Operational Amplifier block, the behavior
can be simulated using a few simple blocks. The comparator circuit used in the previous sections has
a threshold of 2.7V (VH) when the output is high and a threshold of 2.3V (VL) when the output is low.
To simplify modeling the behavior of the resistive feedback network, you can use a switch to set the
threshold value based on the state of terminal "OutputPlus" of the Operational Amplifier. The switch
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selects 2.3V as the threshold when OutputPlus is close to 5V and 2.7V as the threshold when
OutputPlus is 0V. You need to use a delay block to prevent algebraic loop issues during simulation.

open_system('comparatorExample.slx")

el
2.7 |
1, Delay
WH n\
L ==5 | InputPius OutpuiPlus
ref Wout
.
23 v o Operational
i i Amplifier
VL Hysteresis Switch P [y C]
Vin - P Inputhinus Crtputiinus -
Vin
Signal

The Operational Amplifier block is configured so that "Supply rail high" = 5V and "Supply rail low" =
0V. The transfer function poles are set such that the Operational Amplifier has a single pole response
providing a propagation delay close to 40ns, which is the propagation delay of TLV3201 comparator
from Texas Instruments. The dominant pole was calculated using 80% of comparator delay (U.8 = 7)
and taking the inverse as shown below:

P T DBer T 320

The transfer function zero is set close to the non-dominant pole so that it cancels out the non-
dominant pole. Simulation results show the expected behavior for a comparator with hysteresis, and
it can be observed that there are no multiple transitions even in the presence of noise.

Win

0.2 LiE] & 0.8 1 1.2 14 1.6 LB
Time [seconds)

Wout

02 o4 O 0.8 1 12 14 1.6 LE
Time [$econds)
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Reference

Art Kay; Timothy Claycomb, "Comparator with Hysteresis Reference Design", (https://
www.ti.com/lit/ug/tidu020a/tidu020a.pdf)

See Also
Linear Circuit Wizard | Operational Amplifier
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Feedback Amplifier Design for Voltage-Mode Boost Converter

Feedback Amplifier Design for Voltage-Mode Boost Converter

This example shows how to tune the components of a power supply controller to control the output
voltage of a boost converter using loop-shape design and fixed-structure tuning methods. This
workflow is demonstrated using a boost converter model and a type-III controller.

You need a Mixed Signal Blockset® license to run this example.

Power Train

This example uses the boost converter and feedback amplifier circuit defined in [1].

L RL D RD VCI

i Rsw
é Rioap
C

|_
e

T

Clock Sawtooth Ramp C, Rs

A, [ e 3R

+ /

R —_—
- V, N |

Gain=1/V, [ LV _T_Rb

1

The power supply system consists of a voltage source, boost power train, load, feedback amplifier and
pulse width modulator. The boost converter converts input voltage V to output voltage V,,. The

output voltage is measured across the load Ry oap, and I1 gap is the current through the load. This

conversion is controlled by the pulse duty cycle d at the output of the pulse width modulator, which is
in turn controlled by the feedback amplifier. The feedback amplifier senses the output voltage and
attempts to make it a fixed multiple of the reference voltage Vy¢f, in response to changes in the

source voltage, load current, and load resistance.

Boost Converter Model
Create a transfer function model for the boost converter with defined component values, at an

operating point specified using the duty cycle and output voltage values observed in [2]. Here, use
the getBoostConverterPlant helper function (available in the folder for this example) to set up
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Vref

this model. For more information, see “Design Controller for Boost Converter Model Using Frequency
Response Data” (Simulink Control Design).

boostConverterPlant = getBoostConverterPlant();
boostConverterPlant.InputName = {'d'};
boostConverterPlant.OutputName = {'Vo'};

Tunable Control Architecture with Type-lll Compensator
Now, set up a closed-loop system for the boost converter using a type-III compensator as a feedback

amplifier and a simple gain block as the modulator gain, as shown in the following architecture
diagram.

+ e Feedback Amplifier | Ve d Vout

3-50

—» Gain —» Boost Converter
Type lll Compensator

The objective is to tune the resistance (R1, R2, R3) and capacitance (C1, C2, C3) values of the type-III
compensator which amplifies the error between the reference voltage and output voltage. A type-III
compensator can increase phase in the mid-frequency range while improving both low and high
frequency responses.

Create Tunable Linear System for Type-Ill Compensator

The type-III compensator structure is defined in the netlist file TypeIII simple.sp. Run the
getControlModel helper function, which uses a Linear Circuit Wizard block to parse the file and
extract a tunable linear model. Configure the compensator using the configureTunableBlock
helper function, and use a tunable gain in series to get the final controlBlock.

modelName = 'TypeIIlICompensator';

load system(modelName);

lcwBlock = [modelName, '/Linear Circuit Wizard'];
loadConfiguration(lcwBlock, 'TypeIII simpleCfg.mat');
% You can now open the mask of the Linear Circuit Wizard
% and examine or adjust the circuit configuration.

% Construct the symbolic model.
msblks.Circuit.packageCircuitAnalysis(lcwBlock, 'Linear analysis');

compensator = getControlModel(lcwBlock,TypeIII simpleCfgSymbolicModel);
compensator = configureTunableBlock(compensator);

K = realp('K',-1);

K.Minimum = -1.2;

K.Maximum = 0;

controlBlock = K*compensator;
controlBlock.InputName = {'e'};
controlBlock.QutputName = {'d'};
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Connect Tunable and Fixed Blocks to Create Closed Loop System

eSum
dSum

sumblk('e = Vref - VoMeasured');
sumblk('VoMeasured = dVo + Vo');

closedLoopSystem = connect(controlBlock,boostConverterPlant,eSum,dSum,{'Vref', 'dVo'}, 'VoMeasured
Loop-Shaping Design
First, view the stability margins and frequency response of the open-loop boost converter plant.

figure;
margin(boostConverterPlant);
Gm = -36.6 dB (at 2.18e+03 rad/s), Pm =-33.1 deg (at 1.4e+04 |
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Design Requirements

Use the following design requirements to define a stable target loop shape:

* Increase gain at low frequencies. Doing so improves the transient performance of reference
voltage tracking and output voltage disturbance rejection and also reduces steady state error.

* Add phase in middle frequencies to increase bandwidth (reduce response time) and achieve
stability with positive gain and phase margins.

* Reduce gain at high frequencies to make the closed loop system robust by attenuating oscillations
in the control signal created by introduced harmonics and noisy measurements in the output
voltage.

Use the helper function getTuningGoals to create the following tuning goal objects, which help you
define constraints and objectives when you tune the system.

* marginsGoal - TuningGoal.Margins (Control System Toolbox) with a gain margin constraint of
5 dB and phase margin constraint of 30 degrees. These constraints enforce stability and also help
you visualize, using viewGoal, how much uncertainty the loop can tolerate at different
frequencies before going unstable.
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* minLoopGainGoal - TuningGoal.MinLoopGain (Control System Toolbox) with an integral
action gain profile and a bandwidth of 1 KHz. The constraint is enforced in the low frequency
range (10 Hz to 200 Hz).

* maxLoopGainGoal - TuningGoal.MaxLoopGain (Control System Toolbox) with a double
integrator gain profile and a roll-off of -40 dB/decade, enforced in the high frequency range (1.5
KHz to 15 KHz).

[marginsGoal, minLoopGainGoal, maxLoopGainGoal] = getTuningGoals();
Tune System

Now, use systune to tune the system, that is, compute the values of the tunable parameters (C1, C2,
C3, R1, R2, R3, and K) such that the open loop response meets the desired design requirements.

First, create a systuneOptions object and adjust the values for the minimum decay rate and
maximum spectral radius to suit tuning for high bandwidth loop shapes. Also, reduce the relative
tolerance criteria for termination.

opts = systuneOptions;
opts.MinDecay = le-15;

opts.MaxRadius = lel5;
opts.SoftTol = le-10;

Tune the system using systune, with the margin goals enforced as objectives (soft goals) and
minimum and maximum loop gain goals enforces as constraints (hard goals). The tuning returns a
converged result that satisfies the hard goals and optimizes the soft goals. The best achieved values
for the soft and hard goals are both less than 1.

tunedClosedLoopSystem = systune(closedLoopSystem,marginsGoal, [minLoopGainGoal,maxLoopGainGoall, o
Final: Soft = 0.28, Hard = 99.504, Iterations = 20

Analyze Results

View Tuned System Results Against Desired Specifications

Create plots of the tuned system against the tuning goals to indicate how closely it meets the desired
specifications. The shaded regions in each plot represent where the tuning goal is violated. The plots
show that the constraints of tracking error and stability margins are met, while the objectives of
minimum and maximum loop gains in specific frequency ranges are optimized.

viewGoal(marginsGoal, tunedClosedLoopSystem);
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Requirement 1: Disk-based stability margins
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viewGoal(minLoopGainGoal, tunedClosedLoopSystem);

Requirement 1: Minimum loop gain as a function of frequs
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viewGoal (maxLoopGainGoal, tunedClosedLoopSystem);
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Requirement 1: Maximum loop gain as a function of frequi
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View Tuned Loop Shape and Stability Margins

The margin plot of the tuned open loop system indicates the bandwidth and robustness along with the
achieved gain and phase margins.

tunedLoopShape = getLoopTransfer(tunedClosedLoopSystem, 'd',-1);
figure;

margin(boostConverterPlant);

hold on;

margin(tunedLoopShape);

grid on;

legend('show', 'Location', 'best');

Gm = 277 dB (at 1.55e+03 rad/s), Pm = Inf

: 5 boostConverterPlant
270 + ""L ; tunedLoopShape |

10° Igpéquency (ljgfilfs}
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View Step Responses of Closed Loop System

Step response plots of reference voltage tracking and output voltage disturbance tracking show that
the response settles without any steady state error with an acceptably small settling time.

figure;
step(getIOTransfer(tunedClosedLoopSystem, 'Vref', 'VoMeasured'));
title('Step Tracking of Reference Voltage');

grid on;
Step Tracking of Reference Voltage
5 101 From: Vref To: VoMeasured
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0 001 002 03 004 005 0068 007
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figure;
step(getIOTransfer(tunedClosedLoopSystem, 'dVo', 'VoMeasured'));
title('Step Rejection of Output Voltage Disturbance');

grid on;
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Step Rejection of Output Voltage Disturbance
From: dVo To: VoMeasured
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Tuned Component Values

Get the transfer function from the controller input e to the duty cycle d and display the tuned
component values.

tunedCompensator = getIOTransfer(tunedClosedLoopSystem,'e','d", " 'd");
showTunable(tunedCompensator);

C2 = le-11

G=1e11
K=-12
RL = les06
R2 = les04
R3 = les04

Simulation Results
Simulation Result with Tuned Controller

open_system("VoltageControlledBoostConverter.slx");

Use an LTI System Block to implement the type-III compensator and simulate the model to examine
the performance. The model uses the following disturbances:

* Line disturbance at t = 0.04 seconds, which increases the input voltage Vin from 5 Vto 10 V.

* Load disturbance at t = 0.065 seconds, which increases the load resistance RLoad from 3 ohms to
6 ohms.
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Feedback Amplifier Design for Voltage-Mode Boost Converter
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The results show that the tuned feedback amplifier rejects the line and load disturbances well.
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Analyze Clock Buffer Using Mixed Signal Analyzer

Analyze Clock Buffer Using Mixed Signal Analyzer

This example shows how you can use the Mixed Signal Analyzer app to analyze a clock buffer
circuit and understand the effect of varying corner points using trend charts. You can also update the
analyses with modified simulation data and export the results to a file.

Export Data from Cadence®
The output is setup for the simulation in the Cadence® ADE Assembler Maestro view:

iﬂ Virtuoso® ADE Assembler Editing: Bash Clock_Buffer maestro*

Launch File Creste Jocls Options Aun EAD ParasmicsiLDE  Window Help

n ; =) T e T T & = R —
| Hu‘@ d |_| L] ‘_—‘ﬁLA_[tJr | G | [ B B3 |[easc "I.IL'ig
| No Parasitics/LDE . ?2." J [No Sweeps || Single Run, Sweegs and Comers . @;3 O o [Ref L @
Data View 7.8 x| Dutputs Setup Results
Mame Value & = P
o —~ &% [T e BRIE e~
fuiil M 22423 rows
= g Tests 0 3 Test | Name | Type | Detais | EvalType | Plot | Sa
Data | History B [~ | [~ | B
Eash_Test signal fin paint 2 |
Run Summary 7.8 x| |pash Test celay in_c2 expr delayMessurs(v{"fin" Presult trar™) W/o2" frasult "tran”) fedge1 "rising” 7nth1 1 PedgeZ "rising” 7nth2 2} point I~
1 Test Nominal Corner | | Bash_Test matisbexpr | adeinfodmsal metricsOnly' felse. importZmsa’false, fileName"/dockBuffer!.mat) | ail !
¥ 2 Point Sweeps ¥ B Corners

In this setup one node (/1in) is probed for waveforms. There is one expression to generate the metrics
data (delay_in 02). To generate a .mat file at the end of the simulation run, a MATLAB® expression
is added that calls the adeinfo2msa function in this format:

adeinfo2msa('metricsOnly', false, 'import2msa', false, 'fileName', 'clockBufferl.m
at')

Altogether 16 cases (2 sweeps of 8 Corners) of simulation runs are performed. Once simulation
finishes in Cadence, the generated .mat file is saved in the present working directory.

Import Data to Mixed-Signal Analyzer
Open the Mixed Signal Analyzer app from the app gallery or MATLAB command prompt.
>> mixedSignalAnalyzer

To import the .mat file containing the Cadence simulation data, click the Import button in the app
toolbar, select File..., and then select ClockBufferl.

The transient and AC analysis simulation data, analysis waveform, and performance metrics shows up
in the Data panel.
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Plot and Analyze Data

To plot the transient waveform, click on /02 under the tran section in the Data panel, then click the
Display Waveform button in the Analysis tab.
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You can plot specific cases of the waveforms currently in focus. For example, to filter out the 1.2V of
vdd, click the Filter button in the Plot Options panel and deselect 1.2 V the newly opened dialog box.
Click the OK button to update the waveforms. The plot now shows the 8 out of 16 cases of waveforms
representing waveforms for 0.9V cases.
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To find the overshoot values for the /02 waveforms, keep /02 selected and select the yMaximum
function from the built-in Analysis section in the Analysis tab. The calculated metrics are added under

Analysis Metrics in the Data panel.
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Add Custom Analysis
You can also add your custom analysis function using the Add Analysis button.

To add a custom analysis function that computes the mean of the slew rates of the transient output
waveform, keep /tran/o2 selected click the Add Analysis button. In the newly opened pop-up
window, select Enter MATLAB expression. Enter the expression to evaluate as
mean(slewrate(y,x)) and click OK.

4 Mixed-Signal Analyzer - Add Analysis — ] X

Inputs

x = Interactive.128»Bash_.. y = Interactive.l28>Bash_..

(@) Enter MATLAB expression
() Create MATLAB function

Evaluate expression

Enter expression to evaluate:

mean(slewrate(y,x))| v

Save expression

| Manage saved expressions

| OK | [ Cancel

This produces the mean of the slew rate data of the output transient waveform under the Analysis
Metrics section in the data panel.
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You can create multiple custom MATLAB expressions or analysis functions and save them for future

use.

Plot Trend Charts

To get better insight about certain parameters, you can add a trend chart by clicking Trend Chart
button in the Metrics tab. For example, to find the trend in the delay metrics data, select
delay in 02 under Metrics section in the Data panel and click the Trend Chart button.
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The trend chart shows the delay between the output (/02) and the input (/1in) signals as various
process corners are varied. You can modify and add new fields to the trend chart.

From the Plot Options panel, select corModelSpec and vdd in the Trend Chart Fields. The fields are
added to the x-axis layers.

3-66



Analyze Clock Buffer Using Mixed Signal Analyzer

)

w 3 Hd & b Od
hew Cpen Save Import  Update Fiot
Seggon  Secson  Semian v - -

e LTER FLOT
Data
+ dockEusarl.mar
= Interagive 123, Bash_Tes! (16 Cases = 2 Pant Svesps * 0 Comers)
- zn
a
2
-ac
m
2
Analysi viawctrms
- Memes
tsiay _in_oz
* fesaigss Meliics
WMamum(Tan 0z
dlewfato{tran A2}

delay_in_uz

Mixed-Signal Analyzer - untitled

MISED-SIGNA AHALYZER

oo Mo

| b =NK 4
i L | Defauit | Expart
Anstyss | THENG Chivt <
e warour |6 =
(=
L coModelSpee |wmperatre vdd Wi
ag® 5 I 0 Joo )
e T T T e E] = @ o3 B
T Sov 40 03 f
] Sow -0 09 2
BE] |Fast 100 12 1
L4 1 £ [Fast 100 |12 20
I [Famt 100 %) 12
) E7] [Fast 100 2 e
Y 150 Sow 40 03 u
L7 3 150 Sow 0 03 1
| .','7] Sow -0 .ﬂ 3 ]
b 150 Sow 40 03 i
! 150 Fast 100 12 1
. | i HE Fast Loe 12 EX
150 Fust 100 12 o
o |10 Fast 100 1z z0u
L I‘. 4 \ 7 v
! \ X Meincs l
i \ i Trered Chiat Fieids Pict
| A \ - (8] A ks 1o Pt IR 7
17 1 e o 1
1 \ | tenperalue |
\ | \ B
., o CE—
- | X | 7 = wp 3
". Y 7 deby_in a2 = ]
\ \ | hd |
.\ \ | | empeanse
\ 4 i | [erModeiSpes
158 - \ | - g |
t i
Logend
(i . L L L L 7
u Y 1.. 2u 180 2 180 20 wn I
2u wu i 1 L I0eKEUMAFL AN, FTEraCtve 128, Bash T8
a0 105 pr > Elows:
o — ToiegeE e || Tt = FleliShbakimamman ks deves
03 12 vaa

You can move parameters inside the x-axis box using the arrow buttons to change the sequence in

which they are placed. You can also move parameters from x-axis to legends and vice-versa until you
see a trend emerging. At that point, you can draw conclusion about the metrics data and its effect on
various design parameters and process corners.
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Update Data with Modified Design Simulation

These analyses performed on waveform and metrics data help in making design decisions for the
circuit you are working on . You can go back to Cadence® after you are satisfied with the analysis
results to make changes to your design and perform another simulation run. After importing the
modified simulation data, use the Update button in the Mixed-Signal Analyzer app to refresh all
the plots and figures in the current working session. You do not have to re-configure your trend chart,
compute analyzed metrics, waveforms and perform filtering on the waveforms the next time around
when you generated the next set of simulation results for the same design.

For example, you can have a second set of simulation results extracted from Cadence® and saved
under a .mat file named clockBuffer2.mat. Now, in a Mixed-Signal Analyzer app working
session, where you have all the plots and figures from the first simulation run present, select Update
> File... and select clockBuffer2.mat.

‘ Mixed-Signal Analyzer - untitled*

MIXED-SIGNAL ANALYZER

w O B s le e @ | e | Y
New  Open Save  Import|| Update | Plot T Add B 7| Default = Export
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A new dialog box opens asking you to select the data to be refreshed. In this case, Interactive.128
data (from ClockBufferl.mat file) is refreshed/updated with Interactive.129 (from
clockBuffer2.mat file) data.

[ —

-

| A Update | ¢ o [B 3

Replace selected data with choice from radio button group:

(7] clockBufferl.mat
Interactive.128, Bash_Test
| ~] clockBuffer2.mat
() Interactive.129, Bash_Test

| Refresh | Cancel |

Click the Refresh button to update the waveforms and trend chart with the data from the new
simulation run.
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Export to Reports

Once you are satisfied with the results, you can export it as a report in either ppt, pdf, doc, or html
file format. You can also rename each plot for your convenience while generating the report using the
Plot > Rename Plot option from the app toolbar. You can also select the format, name, and location
of the report file. By default, the report is saved in the maestro/documents folder of the design.
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LDO Circuit Analysis Using Mixed-Signal Analyzer

This example shows you how to use the “Trend Chart’ plotting capability and ‘Update’ workflow
feature of Mixed Signal Analyzer (MSA) app, in analyzing a Low Drop-Out (LDO) voltage regulator
circuit.

LDO

LDO is an analog circuit that maintains a constant output voltage relative to the input reference
voltage, even with varying load current. The LDO schematic shown below comprises an OpAmp, a
pass-transistor (FET) and resistor divider (R1, R2) in a feedback loop.

Vi

ldo out

. ng

R2§ load

One of the important characteristics of the LDO is load regulation. It is defined as the ability of the
LDO to maintain a steady output with changes in the load current [1]. The worst case of the output
voltage variation occurs as the load current transitions from zero to its maximum rated value or vice
versa. Load regulation is a steady state parameter, i.e., the frequency components are ignored [1] and
is measured in simulation using ‘DC analysis’ in Cadence Virtuoso.

Vo

Load Regulation = AT,

Phase margin is a dynamic parameter which represents the stability of the feedback loop in the LDO
block. Phase margin is measured in simulation using ‘Stability Analysis’ in Cadence Virtuoso.
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3-72

LDO Simulation Data

Before using MSA app, one needs to generate LDO simulation data using Cadence Virtuoso. The LDO
circuit is simulated in Cadence Virtuoso across various PVT corners. Important LDO metrics like load
regulation and phase margin, waveforms showing transient behavior of the LDO are saved during the
simulation.

You can extract the cadence simulation data into a mat-file for further analysis in MSA using the
function adeinfo2msa(). More information about using this function can be found on the Mixed Signal
Analyzer.

Import Simulation Data Into MSA

The LDO simulation data has been provided in a mat-file named ‘ldo test Interactive.l.mat’. You can
import the simulation data in MSA using the command below:

mixedSignalAnalyzer('ldo test Interactive.l.mat')

Above function run opens MSA app and displays the list of simulation data imported from Cadence
into the data panel of the app. Next, you can select any signal name and click on “Display Waveform’
button in the toolstrip to visualize the signal. For example, in the image below we are displaying the
waveform at output (i.e., 1do_out’) of the LDO using the transient analysis data.

J
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You can visualize metrics like ‘Phase Margin’ by selecting the metric and clicking on ‘Trend Chart’.
You can also customize the plots e.g., rename a plot (expand the ‘Plot’ menu and click on ‘Rename
Plot’) or rearrange the plot parameters (click on the arrows above ‘X-Axis’ and ‘Legend’).
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You can save your plot customizations in a session mat-file using the menu option ‘Save Session’. A
session mat-file called ‘LDO Interactive.l.session.mat’ has been provided to you. Optionally, you can
run the following function call to view the customizations saved in the session mat-file.

% mixedSignalAnalyzer('LDO Interactive.l.session.mat')

MSA Update Workflow

You can use the update workflow to update the plots based on your customization when you tweak a
design. For example, let the minimum requirement on the LDO phase margin be 60 degrees. Here are
the steps that can be followed to update your plots in MSA:

1  You can see from the trend-chart of ‘Phase Margin’ that it is lesser than 60 degrees for the FF
corner. Let’s say you tweak a design parameter, e.g., increase ‘Cfb’ to improve the phase margin,
and re-run the simulation to verify the results.

2 You can generate a new mat-file consisting of simulation results from the tweaked design using
the function call adeinfo2msa(runName='Interactive.2' metricsOnly=false,import2msa='false'). A
mat-file with the updated results called ‘ldo test Interactive.2.mat’ has been provided to you.

3 You can update the MSA session by using the new simulation mat-file and the session-mat file
from the previous section as input arguments using the following function call. The function also
generates a report as per the provided arguments.
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msaSessionUpdate(sessionFileName='LD0 Interactive.l.session.mat’,
sessionPath='./"', updateMatFileName='ldo test Interactive.2.mat',
reportType="pdf', reportFileName='LDO Design Report")

ans =
"C:\TEMP\Bdoc23a 2213998 3568\1ib570499\5\tpb698709e\msblks-ex31119905\LD0 Design Report.pdf"'

After running the session update function, MSA sets up the plots as per the customization in the
session mat-file. You can see that the LDO phase margin is greater than 60 degrees at all corners
after tweaking ‘Cfb’.

MSA Update From Cadence

An alternative workflow to update your MSA plots directly from Cadence, without generating a
simulation mat-file, is by adding the msaSessionUpdate() function call as a ‘matlabexpr’ under
‘Outputs Setup’ in maestro view. At the end of simulation, MSA plots get updated with new simulation
data using the customizations from the session mat-file, e.g., 'ldoSession.mat' in the function call
shown below.

Test

Ido_test
Ido_test
Ido_test
Ido_test
Ido_test
Ido_test
Ido_test
Ido_test

Ido_test

Name | Type | Details | EvalType | Plot | Save |

n signal n”dﬂ_ou‘ n point R
loadReg expr ((ymax(VS("/Ido_out")) - ymin{VS("/ido_out")}) / (ymax(IS("/M30/D")) - ymin(IS("/M30/D"))) point v
dLoadReg expr deriviV5("/Ido_out")) point v
Phase Margin expr getData("phaseMargin” Zresult "stb_margin") point v
Gain Margin expr getData("gainMargin” ?result "stb_margin") point ~
Loop Gain Phase expr phaseDegUnwrapped(getData("loopGain™ ?result "stb")) point 4
Loop Gain dB20 expr db(mag(getData("loopGain” ?result "stb™))) point v

signal () /M30/D point M |
matlabexpr MmsaSessionUpdate(sessionFileName="ldoSession.mat',msaVisibility=true,reportType="pdf) all v

Conclusion

The capability of MSA to analyze metrics/scalar results using ‘Trend Chart’ feature has been
presented. A workflow is also shown for updating the plots after design tweaks using MSA and
generate a report with the updated results. This “Update Workflow” can be automated by including
the function calls in a MATLAB script that can be called after the simulations are completed.

Reference

[1] Understanding the Terms and Definitions of LDO Voltage Regulators
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Generate VerilogA Model of CTLE Using Custom Function in
MSA

This example shows you how to write custom analysis function in Mixed-Signal Analyzer (MSA) app to
fit the transfer function of a CTLE circuit to a rational function and generate a VerilogA model that
can be simulated in Cadence.

CTLE

Continuous Time Linear Equalizer (CTLE) is used in Serializer/Deserializer (SerDes) systems for
signal reconstruction. It applies a linear peaking filter to equalize the signal and reduce distortions
resulting from lossy channels.

Vdd
L1_peak |2 peak
R1 Rgg
outp outn
Q1 Q2
= C3 _6") — !
inp Taly!
Rstep
Q3 )H’ Q4

Cstep
Vb E ) Vb
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Using the notations used in the typical CTLE circuit provided above we can define its transfer
function as shown below:

__outp — outn
~ inp —inn

The equalization circuits compensate for low-pass characteristics of the physical medium by
amplifying high-frequency components of the incoming signal. The CTLE can support both DC and AC
gain as shown in the plot below [1]. DC gain control is varied in the CTLE circuit in this example by
varying Rstep.
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A
Gain
@B) | pcgain
Control
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I - Frequency
AC Gain
A Control
Gain ‘
(dB)
Frequency

Custom Analysis in MSA

Before using MSA app, one needs to generate CTLE simulation data using Cadence Virtuoso. CTLE
simulation in Cadence is performed using different gain settings and saving input and output
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waveforms for each setting. You can extract the cadence simulation data into a mat file for further
analysis in MSA using the function adeinfo2msa(). You can provide name-value pairs as arguments to
this function. More information about using this function can be found at

<msblks ref#mw 95f326b1-aad1-433d-9d4e-f8b704a29fha>.

The CTLE simulation data has been provided in a mat-file named ‘CTLE TestCase.mat’. You can
import the simulation data in MSA using the command below:

mixedSignalAnalyzer('CTLE TestCase.mat')

The function opens MSA app and displays the list of waveform data brought over from Cadence in the
data panel of the app. Next, you can select any signal name and click on “Display Waveform” button
in the toolstrip to visualize the signal. For example, in the image below waveforms related to 21-point
sweeps for signal ‘outp’ has been displayed in the app.

H P T | | '1;]- &l .Jh ]
u i i >, G U L LR 2k} ) . L I A 4
New Open Save Import Update | Filler Piot Display cap dutyCycle Add Default Expont
Session Session Session + - - Wavelorm Analysis = -
FILE ) FILTER | PLOT ANALYSIS __ METRICS LAYOUT  EXPORT
Dz Plot 1
= CTLE_TestCase mat Plot 1
= Interactive.3, CTLE (21 Cases = 21 P e 1 Select Fier ...
- Display? Node
a 09 | CTLE_TestCase.mat, 4
Any . T
e ol CTLE_TestCase.mal
foutn
| CTLE_TestCase.mat,
Joutp 0.8 ! -
| CTLE_TestCase.mat
Analysis Waveforms
. | CTLE_TestCase.mat
= Metrics 0.7 =
No metrics found. vl _CTLE'TESICM —
Analysis Metrics 0.6 | CTLE_TestCase.mat
= | CTLE_TestCase.mat,
0.5 | CTLE_TesiCase.mat
v -CTLE_Teleas-e mat
0.4 =l |CTLE TestCase.mal
| CTLE_TestCase.mat
03 =l CTLE_TestCase.mat
| CTLE_TestCase mat
02 ] CTLE_TestCase.mat.
| CTLE_TestCase mat
R = H - 17 v CTLE_TestCase.mat
10° 10* 10f 10" 10™ 10 1 | CTLE_TestCase.mat, «
freq 4

To add a custom analysis function to fit the CTLE transfer function to a rational function, select the
signals ‘/outp’ and ‘/outn’ and then click on ‘Add Analysis’ button in the toolstrip. This will pop-up an
interface to perform your analysis. You can select ‘Create MATLAB function’ radio button and click on
‘Create’ to get MATLAB editor window to code your algorithm.
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3-80

Mixed-Signal Analyzer - Add Analysis v oAl X

Inputs

x1 = Interactive. 3>CTLE>ac>/ouin>X ... yl = Interactive.3>CTLE>ac>/ouin>Y
%2 = Interactive.3>CTLE=ac>/outp=X ... y2 = Interactive 3>CTLE>ac>/outp>Y ...

[ Provide one [x, y] input pair at a time

| Enter MATLAR expression
o) Create MATLAB function

New function configuration

Function name @ myRationalVa - Open

Parameter Example prompt: NA
prompts

rCreate |

OK Cancel

You can modify the code template provided by the custom analysis tool to add your own code after the
comment ‘Begin custom code’. The algorithm for the custom function to perform rational fit is shown
below:

1 The arguments to the function are the waveforms from AC analysis. The differential output is
given by (y2- yl1). Here y2 = outp and y1 = outn. x1 is the frequency vector. The differential
input to CTLE has a unity magnitude.

Perform rational fitting of the frequency domain response and obtain the response Yout

Export the obtained rational function to a Veriloga file for behavioral model simulation in
Cadence [2]

Use the code shown below for implementing the above algorithm, i.e., for fitting a rational function to
the CTLE output and generating a VerilogA model.

function [Xout, Yout, NameValuePairs] = myRationalVa(x1l, x2, yl, y2, dialogAnswers)
%SMYRATIONAL Summary of this function goes here
Detailed explanation goes here

Inputs:
x1, ..., xN x-coordinate vectors for waveforms 1 through N
yl, ..., yN y-coordinate vectors for waveforms 1 through N
dialogAnswers struct containing responses to the parameter

d° 0° o° 0 d° o° o°

dialog box.
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Outputs:
Xout
Yout
NameValuePairs

0° 0° 0% 3% 0% 0° O° O° I° O° O° I° P O° o°

o o°

box. Modifying these
arguments

x1 {mustBeNumeric,
x2 {mustBeNumeric,
yl {mustBeNumeric,
y2 {mustBeNumeric,

x-coordinate vector for output waveform
y-coordinate vector for output waveform

cell array. Even entries are names (text) and
odd entries are values (any type). By default,
the following names have special meanings:

xUnit 'Time' | 'Freq' units for Xout
yUnit 'Time' | 'Freq' units for Yout
xScale 'Linear' | 'Log' scaling for Xout
yScale 'Linear' | 'Log' scaling for Yout

xLabel Xout axis label (text)

yLabel Yout axis label (text)

function Name of the completed analysis
All other name-value pairs are interperted as
analysis metrics.

Comments following dialogAnswers are used as prompts for the input dialog

comments will change the prompts.

mustBeVector};
mustBeVector};
mustBeVector};
mustBeVector};

dialogAnswers.Promptl {mustBeNonzeroLengthText} = '0'; % Example prompt: NA

end

%Initialize returned values

Xout = x1;
% Yout = yl;
NameValuePairs = {};

% Begin custom code.
persistent n;
if isempty(n)
n=1;
end

rationalObject = rational(xl,y2-yl);
Yout = freqresp(rationalObject,x1l);

writeva(rationalObject,

n = n+l;

['file' num2str(n)]);

semilogx(x1l, 20*logl0O(abs(Yout)));
hold on; semilogx(x1l, 20*logl@(abs(y2-yl)));

end

After editing the function, save the file and click on ‘OK’ on the custom analysis prompt. The
waveform ‘myRationalVa’ should appear under ‘Analysis Waveforms’. To display the waveforms first
click on ‘Plot’ to add a new tabbed plot window. Now, select ‘myRationalVa’ and click on ‘Display

Waveform'.
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Verification In Cadence

The above custom function also generates 21 VerilogA files corresponding to the 21 cases in the
simulation database. You can use the VerilogA models for behavioral simulations in Cadence, or to
share a black-box model of your design without disclosing your IP. A comparison of simulation result
in Cadence Virtuoso, using the CTLE schematic (transistor-level) versus the generated VerilogA
model shows a close match between the two cases, for Rstep = 1.515 kOhm.
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AC Response 1
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Conclusion

In this example, simulation results for a CTLE design from Cadence in the form of a mat-file were
imported into MATLAB using MSA, and custom function was written to generate VerilogA models that
represent the design. Thus, MSA can be used for seamlessly post-processing simulation results from
Cadence Virtuoso.

References

[1] Continuous Time Linear Equalization (CTLE) (intel.com)

[2] Export Verilog-A Model - MATLAB & Simulink (mathworks.com)
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Boost Power Train Operating Point Analysis

This example shows how to analyze the operating point of a power train for a boost switched mode
power supply (SMPS) using the Linear Circuit Wizard from the Mixed-Signal Blockset.

One of the first steps in the design of an SMPS is to determine the control duty cycle needed to obtain
a desired steady state output under a fixed set of supply and load conditions, referred to as an
operating point. This analysis must also create the power train small signal control model needed to
design the power supply control loop.

However even before the control loop is designed, some form of operating point analysis is needed to
choose the power train circuit topology and the circuit elements to be used in the power train. There
are typically many options available, and each combination of options that can produce the required
output must be analyzed for efficiency, output ripple, input ripple and cost in order to settle on a
power train circuit design.

You can use the Linear Circuit Wizard to perform a complete operating point analysis, leading to a
detailed power train circuit design and the models needed to design the power supply control loop.
The design of the power supply control loop is demonstrated in a separate example, Feedback
Amplifier Design for Voltage-Mode Boost Converter.

Power Train Circuit

The power train circuit design used in this example was adapted from a widely used tutorial on
feedback loop analysis. Operating point analysis must be capable of providing comprehensive
information on very detailed circuit designs, and so the circuit design used in this example includes
detailed models of commercially available parts for the switching device, diode and inductor (except
that the inductance is the 75uH of the original example instead of the 104uH for the commercial
part). A load current source is included to model the powering of semiconductor devices, and the
switching cycle control signal (Vcntl) is included as well.

R6 10mQ2

1

)
U

1
I
]
I
I
I
|
| 7 Vsense 9
I
I
I
]
I
I

5

R2 70mQ

¢ lload Q) Rload 2
C1220pF

Ventl| 4 Vin

C) i Rsw 4,3mQ2

+

24kQ2

|

I

1

1

Csw 460pF :

*f !

° |Bscosoanst [T |

Two resistance values are shown for the switching device and the diode - an "on" resistance and an
"off" resistance.

The circuit is described by the SPICE netlist TIBoostPowerTrain.sp, written in the Linear Circuit
Wizard dialect and included with this example.
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Analysis of a Single Design Point

The analysis process begins by configuring the analysis of a single set of circuit element values and
operating conditions, referred to in this example as a "design point".

Once the analysis has been configured, you can run the analysis using the Analyze operating point
button on the Operating Point Analysis tab of the user interface. This creates a plot of the selected
output as a function of control input, along with a base workspace struct containing a table of DC
results, a set of detailed waveforms, and the control system matrices needed to construct a small
signal model of the power train for use in designing the power supply control loop. The name of the
base workspace struct is the string 'Out’ appended to the name of the configuration.

The steps to configure the analysis for a boost power train are described in the next subsection,
followed by subsections on each of the outputs.

Configuration

The most convenient approach is to load one of the example configuration files and then modify the
contents of the Linear Circuit Wizard block mask to meet your requirements.

Load the analysis configuration TIBoostCfg1.

modelName = 'OperatingPointWizard';
load_system(modelName) ;

lcwBlock = [modelName, '/Operating Point Wizard'];
open_system(lcwBlock);

ConfigurationName = 'TIBoostCfgl';
loadConfiguration(lcwBlock,ConfigurationName) ;

Warning: P-code file
/mathworks/devel/sbs/71/msteinbe.BR2023ad.j2166087/matlab/toolbox/msblks/msblks/+msblks/+Circuit
is older than source code file
/mathworks/devel/sbs/71/msteinbe.BR2023ad.j2166087/matlab/toolbox/msblks/msblks/+msblks/+Circuit
/mathworks/devel/sbs/71/msteinbe.BR2023ad.j2166087/matlab/toolbox/msblks/msblks/+msblks/+Circuit
may be obsolete and may need to be regenerated.

Type "help pcode" for information about generating P-code.

Linear
Circuit
Wizard

Operating Point Wizard

You can also configure the analysis from empty mask using the following steps:

1. Load the circuit netlist.

3-85



3 Mixing Analog and Digital Signals Featured Examples

Block Parameters: Operating Point Wizard

Linear Circuit Wizard {(mask)

Load and configure an electronic circuit. Supported outputs include
- Linear circuit block

- Switched circuit block

- Control System Toolbox tunable object

Parameters

Circuit Definition | Linear Analysis = Operating Point Analysis

Circuit design name |'Tl Boost'
Block name |'Power Train'

Netlist file name |'TIBoostPowerTrain.sp' |} Browse ...
Parsed netlist file name is '
Configuration name " : Browse ...

Loaded configuration file name is
Use Browse button to see file path.

Parse netlist file and start new configuration
Save configuration Load configuration

Configuration notes

b

OK Cancel Help Apply

Use the netlist Browse button to select a netlist and then use the Parse netlist file and start new
configuration button to parse the netlist and set up the remaining mask tabs.

2. Choose the input and output ports.
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Block Parameters: Operating Point Wizard

Linear Circuit Wizard {(mask)

Load and configure an electronic circuit. Supported outputs include
- Linear circuit block

- Switched circuit block

- Control System Toolbox tunable object

Parameters
WARNING: Build/medify block to get the latest changes.

Circuit Definition Port Definition Configure Circuit = Device Moise Linear Analysis Operating | *

Port
Filter table contents
. Ti Positive nod ! itive nod @ irent n

Ventl Voltage input 5 0 -

Vin Voltage input |1 0 -

lload Current input 9 0 -

Vout Voltage out... 9 0 -

lout Current out... -- - Vsense

Add port | |Move port up | | Move port down Delete port

OK Cancel Help

In this configuration all of the ports were set up by the circuit netlist. The Delete port button was
then used to delete the Vd and Vsense ports that were not needed.

3. Set the number of switch states. and then define the role ("Type") each circuit element plays in the
analysis.
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Block Parameters: Operating Point Wizard

Linear Circuit Wizard (mask)

Load and configure an electronic circuit. Supported outputs include
- Linear circuit block

- Switched circuit block

- Control System Toolbox tunable object

Parameters
WARNING: Build/medify block to get the latest changes.
Circuit Definition | Port Definition | Configure Circuit | Device Moise | Linear Analysis = Operating | *

Circuit elements

Filter table contents

a3 valu T State 1 tate 2 tate =
Ventl 0 Timed input
Vin 10 Fixed
RE 0.01 Fixed
L1 7.5e-05 Fixed
RL1 0.01 Fixed
Rsw 0.0042 Switch state 4.2e-3 24e3 24e3 [:g-
Csw 4.6e-10 Fixed
Number of switch states |3
Switch state transitions
Filter table contents
irt stat [ I inst Thresho !
Any Ventl == 0.5
1 ventl = 0.5 2
2 ivd == 0 3 =
i k
oK Cancel Help

In this example the Vcntl Type was set to Timed input, indicating that this is the port where the
precisely timed control waveform must be applied. Also, the values for the circuit elements Rsw, Vd,
and Rd are a function of the switch state, and these values must be entered for each switch state.

5. Define the switch state transition rules.
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Block Parameters: Operating Point Wizard

[ a3 Valu Ti state 1 State 2 State 3 -
RL1 0.01 Fixed
Rsw 0.0042 Switch state 4.2e-3 24e3 24e3
Csw 4.6e-10 Fixed
vd 0.9 Switch state 0 0.9 0
Cd 4.3e-10 Fixed
Rd 0.0057 Switch state 100e3 5.7e-3 100e3
R2 0.07 Fixed
Number of switch states |3
Switch state transitions
Filter table contents h
irt stat [ I nsl Thresho !
Any Ventl == 0.5
1 Ventl < 0.5
2 ivd <= 0
Add transition | | Move transition up | | Move transition down Delete transition
v Attach configuration to block Build Simulink block
L] ¥
oK Cancel Help

In this example there are three transition states. The circuit enters state 1 when the control input
goes high and state 2 when the control input goes low. However when the diode current goes
negative (iVd <= 0) the circuit enters discontinuous conduction mode, which is state 3.

6. Define the desired operating point(s) and control signal configuration.
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Block Parameters: Operating Point Wizard

Linear Circuit Wizard (mask)

Load and configure an electronic circuit. Supported outputs include
- Linear circuit block

- Switched circuit block
- Control System Toolbox tunable object

Parameters

WARNING: Build/medify block to get the latest changes.

n Port Definition Configure Circuit = Device Moise Linear Analysis Operating Point Analysis | 4

Enter parameter values for operating point analysis.

Output port | Vout * | Steady state output value(s) |[14 18 24]

Primary control variable

® Duty cycle

Frequency

Duty cycle value [min,max] |[0.1 0.9] Frequency [min,max] 100e3

Phase offset(s) |0 Pulse duration(s) d

Samples per waveform 1024

Analyze operating point

oK Cancel Help

The desired output(s) and the timing of the control signal are defined on the Operating point
analysis tab. Choose the output port that you want to have controlled and then enter one or more
desired output values. In this example voltages of 14, 18 or 24 volts at output port Vout are specified.

7. Save the analysis configuration.
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Once you've finished configuring the analysis you should go back to the Circuit definition tab to
give the configuration a name, add some notes to remind you what the goal of the configuration was,
and then use the Save configuration button to save a configuration file for later use.

8. Launch the analysis.

Use the Analyze operating point button to launch the analysis or use the mask callbacks directly.

msblks.Circuit.manageCircuitElementList(lcwBlock);

msblks.Circuit.packageCircuitAnalysis(lcwBlock, '

40 ¢

35

30

25

Vout

20 p

T
My

Operating point analysis');

10 = : ' ' ' '
0.5 a.

Duty Cycle

Results Table

TIBoostCfglOut.DcResults

ans
3x6 table

Duty Cycle Frequency Vin Iload v

6 0.7 0.8 0.9

out Iout

0.35872 le+05 10

14

~

0.51172
0.65419

le+05
le+05

10
10

18
24
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3-92

Waveforms

TIBoostCfglOut.Waves{2}(1:10,:)

ans =

10x18 table

Time Vout Tout State

0 17.488 8.744 1
9.7656e-09 17.488 8.7439 1
1.9531e-08 17.487 8.7437 1
2.9297e-08 17.487 8.7435 1
3.9063e-08 17.487 8.7433 1
4.8828e-08 17.486 8.7431 1
5.8594e-08 17.486 8.7429 1
6.8359e-08 17.485 8.7427 1
7.8125e-08 17.485 8.7425 1
8.7891e-08 17.485 8.7424 1

e el el el

1

10
10
10
10
10
10
10
10
10
10

The waves continue for 1024 samples. Also note that the state and all of the node values are included

in the table.

Small Signal Model

TIBoostCfglOut.SSModels(2)

ans =

struct with fields:

[4x4 double
[4x6 double
[2x4 double
[2x6 double

OO w>

]
]
]
]

Adding Metrics to the Analysis

Given the waveforms in the output struct you can implement your own metrics. The script
getPowerTrainMetrics included with this example demonstrates the type of analyses that are
possible. This script appends results to the DcResults table show above. It uses the function

getCircuitElementPower to perform much of the detailed data access.

Run the getPowerTrainMetrics script, display the power analysis table, the efficiency metrics
derived from the power analysis table, and the ripple metrics derived from the waveforms.

getPowerTrainMetrics;

Power Analysis Table

TIBoostCfglOut.DcResults(:,7:18)

2 3 4 6
9.8189 0.25718 0.076067 0.076
9.8189 0.2572 0.076073 0.076
9.8189 0.25721 0.076078 0.076
9.8189 0.25723 0.076083 0.076
9.8188 0.25725 0.076088 0.076
9.8188 0.25727 0.076093 0.076
9.8188 0.25728 0.076099 0.076
9.8188 0.2573 0.076104 0.076
9.8188 0.25732 0.076109 0.076
9.8188 0.25734 0.076114 0.076



Boost Power Train Operating Point Analysis

ans =
3x12 table
P _Vcntl P Vin P _R6 P RL1 P _Rsw P_vd P_Rd P R2 P_Vsens:
0 -109.19 1.1924 1.1924 0.18556 6.3075 0.43688 1.7915 3.4787e-
0 -184.37 3.3997 3.3997 0.73855 8.1018 0.94766 5.5512 2.8578e-
0 -347.09 12.047 12.047 3.3176 10.82 2.3818 17.822 2.8563e-
Efficiency and Ripple Metrics
TIBoostCfglOut.DcResults(:,19:end)
ans =
3x5 table
Efficiency Vin ripple Iin ripple Vout ripple Iout ripple
0.90806 0.0046524 0.46524 0.82921 0.4146
0.89621 0.0065185 0.65185 1.4201 0.71003
0.86158 0.0079873 0.79873 2.6534 1.3267
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* “Measuring VCO Phase Noise to Compare with Target Profile” on page 4-2

* “Finding Voltage Sensitivity and Quiescent Frequency of VCO” on page 4-4

* “Frequency Division Using Single Modulus Prescaler” on page 4-6

* “Frequency Division Using Dual Modulus Prescaler” on page 4-8

» “Frequency Division Using Fractional Clock Divider with Accumulator” on page 4-10
* “Frequency Division Using Fractional Clock Divider with DSM” on page 4-12
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Measuring VCO Phase Noise to Compare with Target Profile

4-2

This example shows how to validate the phase noise profile of a VCO device under test (DUT) using a
VCO Testbench.

Open the model vcoPhaseNoise . The model consists of a VCO block and a VCO Testbench.

open_system('vcoPhaseNoise.slx")

i
o { . | . WCOo -
| veir '._. N ..l' wio out — from woo Tesibench fo voo
M

The voltage sensitivity of the VCO is set to 1.25e6 Hz, and the free running frequency is 2e9 Hz.

The testbencch is set to measure the Phase noise metric of the VCO in the Measurement option.
The Control voltage provided to the input of VCO is 4 V. So, the VCO operates at 2.5 GHz
frequency. Click the Autofill setup parameters button to automatically calculate the Resolution
bandwidth (Hz), and No. of spectral averages.

Run simulation for 8e-4 s, as recommended in the Block Parameters dialog box. Double click the
VCO Testbench block to open the Block Parameters dialog box. Click on the Plot measurement
button.



Measuring VCO Phase Noise to Compare with Target Profile

Phase Noise
No. of Averages = 8 Center Frequency = 2.5 GHz

Measured

=== = Target

Phase noise (dBc/Hz)
Y

-140

-160

180 —————— : e
10° 10° 107
Frequency offset (Hz)

The operating frequency matches the predicted frequency 2.5 GHz. The measured phase noise
profile also matches the target profile.
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Finding Voltage Sensitivity and Quiescent Frequency of VCO

4-4

This example shows how to find VCO metrics such as voltage sensitivity (Kvco) and quiescent
frequency or free running frequency (Fo).

Open the model vcoCharacteristics. The model consists of a VCO block and a VCO Testbench.

open_system('vcoCharacteristics.slx")

from veo Veo o voo
Testbanch

¥

wedr [ s oo out

Y

Copyright 2020 The MathWorks, Inc.
The testbench is set to measure the Kvco and Fo metric of the VCO in Measurement option. Range
of control voltage (V) provided to the input of VCO is set to [1 10].

Run the model for 1.2e-3 s. Double click the VCO Testbench to open the Block Parameters dialog
box. Click on the Plot measurement button.

From the simulation, the free running frequency is 2.5 GHz, and voltage sensitivity is 125 MHz/V.



Finding Voltage Sensitivity and Quiescent Frequency of VCO
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Frequency Division Using Single Modulus Prescaler

Open the model singleModulusPrescaler. The model consists of a Pulse Generator and a Single
Modulus Prescaler block.

model="'singleModulusPrescaler"';
open_system(model)

| | clk in ILriri
" : (=
[ | o
Frequeancy = 2.5 MHHz Single clk out o I
2 W div by Maodulus

Copyright 2018 The MathWorks, Inc.

The period of the incoming pulse at the clk in port is 4e-7 s. So, the incoming signal has a frequency
of 2.5 MHz. The div-by value is set at 2.
Run the simulation for 2e-6 s. The frequency of the output signal is 1.25 MHz.

sim(model);
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Frequency Division Using Single Modulus Prescaler
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Frequency Division Using Dual Modulus Prescaler

Open the model Dual Modulus Prescaler Ex. The model consists of a Pulse Generator and a Dual
Modulus Prescaler block.

model="'Dual Modulus Prescaler Ex';
open_system(model)

ILriri
* -
B T | g
| clk in clk out g
In Dual Ot
Modulus
Frequency = 10 MHz

Dual Medulus Prescalar

Copyright 2018 MathWorks, Inc

The period of the incoming pulse at the clk in port is 1e-7 s. So, the incoming signal has a frequency
of 10 MHz. The Program counter value, Prescaler divider value, and Swallow counter value are
4, 1, and 1, respectively. The effective clock divider value of the dual modulus prescaler is 5.

Run the simulation for 1e-4 s. The frequency of the output signal is 2. 002 MHz.

sim(model);
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Frequency Division Using Dual Modulus Prescaler
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Frequency Division Using Fractional Clock Divider with
Accumulator

4-10

Open the model fractionalClockDivider w Accumulator. The model consists of a Pulse
Generator and a Fractional Clock Divider with Accumulator block.

model="'fractionalClockDivider w Accumulator';
open_system(model)

Yy

clk out

Qi

Y

ﬂ_ﬂ_ - ckin. MM

_I—1L_r stats —m—]
Accumulator

Frequency = 2.5 MHHz

2.5

Y

div by

carry ——]

Caopyright 2019 The Math\Works, Inc.

The period of the incoming pulse at the clk in port is 4e-7 s. So, the incoming signal has a frequency
of 2.5 MHz. The div-by value is set at 2. 5.

Run the simulation for 1e-4 s. The frequency of the output signal is 1.002 MHz.

sim(model);



Frequency Division Using Fractional Clock Divider with Accumulator
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Frequency Division Using Fractional Clock Divider with DSM

Open the model fractionalClockDivider w DSM. The model consists of a Pulse Generator and a
Fractional Clock Divider with Accumulator block.

model="'fractionalClockDivider w DSM';
open_system(model)

| B clk in i Iy I (S
" : O
I I 1 - o
Frequency 2.5 MHZ ) clk out o
25 p{dvpy 2nd Order AV

Fracticnal Clock Divider with DSM

Copyright 2019 The Math\Works, Inc.

The period of the incoming pulse at the clk in port is 4e-7 s. So, the incoming signal has a frequency

of 2.5 MHz. The div-by value is set at 2.5. The clock divider uses a second order delta sigma
modulator.

Run the simulation for 1e-4 s. The frequency of the output signal is 1.002 MHz.

sim(model);
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Frequency Division Using Fractional Clock Divider with DSM
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* “Measure Offset and Gain Error of Binary Weighted DAC” on page 5-2

» “Measure AC Performance Metrics of Binary Weighted DAC” on page 5-4

* “Measure AC Performance Metrics of DAC Using DAC AC Measurement” on page 5-6
* “Measure DC Performance Metrics Using DAC DC Measurement” on page 5-8
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Measure Offset and Gain Error of Binary Weighted DAC

5-2

This example shows how to find the offset and gain errors of a binary weighted DAC block.

Open the model dac_dc_error. The model consists of a Binary Weighted DAC block and a DAC
Testbench.

model = 'dac dc error';
open_system(model)

to dac digital

¥

dagital

Binary-Weighted DAC
DAC analog from dac analog OC Testbench

b J

stant

¥

to dac start

The parameters under the General tab of the Binary Weighted DAC are kept at their default values.
The impairments are enabled in the Impairments tab, and the value of the offset error and gain
error are set to 2 LSB and 1 LSB, respectively.

In the DAC Testbench block, the Measurement option is set to DC. In the Setup tab, the Autofill
setup parameter button is used to automatically propagate the setup parameters from the DAC
block. In the Target Metric tab, the Autofill target metric button is used to automatically set the
target offset and gain errors from the DAC block. All other parameters are kept at their default
values.

Run the simulation for 7.68e-04 s. The measured offset and gain errors are 2.00 LSB and 1.00
LSB, respectively.

DAC to dac digital
W cigita DC Testoench

- Metrics Maasured  Target
Binar YD‘I:"'IE!. ghted analog W from dac .anaalc:g___J ! - 4

or{LSB) 200 2.00
—— o start Gain ermor{LSE) 1.00 1.00

The DAC transfer curve matches the best linear fit method. Using best fit method, maximum INL is
-3.3e-4 LSB and maximum DNL is 4.6e-4 LSB.



Measure Offset and Gain Error of Binary Weighted DAC

DAC Transfer Curve (Best Linear Fit Method)
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5 L o09P"
5 -10T 3@@@(3‘ .
r_T-\GO(_ . . \
-1 -0.5 0 0.5 1
Analog Output

Best Fit Nonlinearity By Code
. «(Mak |INL| = -0.00048 LSB, Max |DNL| = -0.00054 LSB)
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o ) ——— Best Fit DNL SF
' 5 10 15
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Measure AC Performance Metrics of Binary Weighted DAC

This example shows how to find the AC performance metrics such as SNR, SINAD, SFDR, ENOB,
noise floor and settling time of a binary weighted DAC block.

Open the model dac_ac_error. The model consists of a Binary Weighted DAC block and a DAC
Testbench.

model = 'dac_ac error';
open_system(model)

to dac digita

¥

dagital

inary-Waight DAC
Ehnar;.D»::.l'Elgh.ed analog P from dac analog AC Tesibench

¥

Start

to dec start

R

The parameters of the Binary Weighted DAC are kept at their default values.

In the DAC Testbench block, the Measurement option is set to AC. In the Setup tab, the Autofill
setup parameter button is used to automatically propagate the setup parameters from the DAC
block. Show spectrum analyzer during simulation option is also checked.

Run the simulation for 9e-3 s.

sim(model);



Measure AC Performance Metrics of Binary Weighted DAC

ESTIMATION MEASUREMENTS SPECTRUM SPECTRAL MASK  CHANNEL MEASUREMENTS +0Pr 0 e

Peaks Harmonic Distortion

Stopped VBW = 500.000 kHz RBW = 1.00000 kHz Sample Rate = 1000.00 kHz Frames =& T = 0.00899400

The measured AC performance metrics are displayed on the DAC Testbench block.
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Measure AC Performance Metrics of DAC Using DAC AC
Measurement

This example shows how to find the AC performance metrics such as SNR, SINAD, SFDR, ENOB, and
noise floor using a DAC AC Measurement block.

Open the model dac_ac_measure. The model consists of a Signal Generator, a Flash ADC, a Binary
Weighted DAC block, and a DAC AC Measurement block.

model = 'dac_ac measure';
open_system(model)

L dagital

digital digital
oooo Binary-Weighted - Dac
oo anaiog DAC ansng NS00 AC Measurement
ready start
- start
|

The Flash ADC acts as the input to the Binary Weighted DAC. The ADC uses an internal start clock
whose Conversion start frequency (Hz) is 1e6 and RMS aperture jitter (s) is 1e-12. The input
analog frequency to the Flash ADC from the Signal Generator is 250 .98 kHz.

Y

h

L

Y

Ciopyright 2020 The MathWorks, Inc.

The Number of bits of the Binary Weighted DAC is set to 10. All other parameters are kept at their
default values.

The Digital signal frequency (Hz) of the DAC AC Measurement block is 2.5098e5 and the Start
conversion frequency (Hz) is 1e6.

Run the simulation for 0.0003586 s.

sim(model);



Measure AC Performance Metrics of DAC Using DAC AC Measurement

ESTIMATION MEASUREMENTS SPECTRUM SPECTRAL MASK  CHANNEL MEASUREMENTS 4“0 rFr 0 e

SFDR

Stopped V = 250000 kHz Sample Rate = 1.00000 MHz Frames =7 T = 0.000354000

The measured AC performance metrics are displayed on the DAC AC Measurement block.
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“, SMR: 62,30 dB
. " ENOB: 10.07
\x reac | st ) siart MNoise floor: -52.10 dBm
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5 Data Converter Block Level Examples

Measure DC Performance Metrics Using DAC DC Measurement

oooo
ag

This example shows how to find DC performance metrics such as offset error, gain error, INL, and
DNL.

Open the model dac_dc_measure. The model consists of a Signal Generator, a Flash ADC, a Binary
Weighted DAC block, and a DAC AC Measurement block.

model = 'dac _dc measure';
open_system(model)

¥

digital

¥

¥

h

¥

digital digital
_ Binary-Weighted _ - Dac
ansog DAC ansg start DC Measurement
ready start
e

analag

¥

The Flash ADC acts as the input to the Binary Weighted DAC. The ADC uses an internal start clock
whose Conversion start frequency (Hz) is 1e6 and RMS aperture jitter (s) is 1e-12. The input
analog frequency to the Flash ADC from the Signal generator is 900 Hz.

The Number of bits of the Binary Weighted DAC is set to 10. The impairments are enabled in the
Impairments tab, and the value of the offset error and gain error are set to 2 LSB and 1 LSB,
respectively. All other parameters are kept at their default values.

The Number of bits and Conversion start frequency (Hz) of the DAC DC Measurement block are
10 and 1e6, respectively. The Settling time (s) of the DAC DC Measurement block is set to 4e-7,
twice the Settling time (s) of the Binary Weighted DAC to ensure the entire transition period is not
considered as part of the steady-state DC measurements.

Run the simulation for 0.02558 s. The measured AC performance metrics are displayed on the DAC
AC Measurement block.
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Utilities Block Level Examples

* “Measure Timing Metrics of Periodic Signal” on page 6-2
* “Define Output Samples in Lowpass Resampler” on page 6-3
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Measure Timing Metrics of Periodic Signal

6-2

Measure the period, frequency, rise time, fall time, and duty cycle of a periodic signal. Also measure
the delay of the input signal with respect to a reference signal

Open the model time metrics measure. The model consists of a Timing Measurement block. A
period sine wave of 50e6 Hz is applied at the reference input signal. A variable time delay of 1e-11s
is applied at the test input port. The Timing Measurement block is set to measure the period,
frequency, 10%-90% rise time, 90%-10% fall time, duty cycle, and the delay with respect to the test
input port.

model = 'time metrics measure';
open_system(model)

A —

- raference frequency >

Timing rise fime f———1__p,

N Measurement fall fime >

e {est duty cycle L

Te-11 La Ll 4,—"'
delay

Run the model for 100 microseconds. The results are displayed on a Display block.

* Period = 0.2 microseconds

* Frequency = 50 MHz

* Rise time = 5.903 nanoseconds
+ Fall time = 5.903 nanoseconds
* Duty cycle = 0.5

* Delay = 10 picoseconds



Define Output Samples in Lowpass Resampler

Define Output Samples in Lowpass Resampler

To demonstrate the variable step discrete behavior of the Lowpass Resampler block, open the model
LowpassResamplerQutputSampling.

model = 'LowpassResamplerOutputSampling';
open_system(model)

]

. Step Input and Output

Y
Yy

Jun

The model consists of a Pulse Generator and a Lowpass Resampler. The pulse generator generates a
pulse of 1 Hz with a duty cycle of 35%. The Pulse type is selected as Time based. In the Lowpass
Resampler, the Output rise/fall time is set to 0.05 s, the Number of samples of delay is set to 1,
the Output sample time is set to Variable step discrete, and Samples out per rise/fall time
is set to 5.

In the Model Settings, the Max step size of the solver is set to 3, the simulation stop time. As a
result, the only sample times are those generated by the model and the sample time display is readily
understandable.

Run the simulation.

sim(model)

ans =

Simulink.SimulationOutput:
tout: [97x1 double]

SimulationMetadata: [1x1 Simulink.SimulationMetadata]
ErrorMessage: [0x0 char]

6-3



6 Utilities Block Level Examples

i
File Tools View Simulation Help

- 4O ®| - v E-|FH-

Resady

T=3.000

To demonstrate the fixed step discrete behavior of the Lowpass Resampler block, set the Output

sample time is set to Fixed step discrete. Rerun the simulation and observe the additional
samples produced by the model.

set param([model '/Lowpass Resampler'], 'OutputTsType', 'Fixed step discrete');
sim(model)

ans =

Simulink.SimulationOutput:
tout: [301x1 double]

SimulationMetadata: [1x1 Simulink.SimulationMetadata]
ErrorMessage: [0x0 char]
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Define Output Samples in Lowpass Resampler

=
File Tools View Simulation Help

@- QP ®| - |w-|E-F&-

=]

plitud

Resady

T=3.000







Mix Analog and Digital Signals

* “Model Linear Circuit Response from SPICE Netlist” on page 7-2

* “Define Device Noise Using Linear Circuit Wizard” on page 7-7

* “Ports Supported in Linear Circuit Wizard” on page 7-9

* “MATLAB Systems Generated from Linear Circuit Wizard” on page 7-11
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Model Linear Circuit Response from SPICE Netlist

7-2

In this section...

“Supported SPICE Syntax” on page 7-2
“LAPLACE Keyword” on page 7-5

The Linear Circuit Wizard block parses a SPICE netlist to model the response of a desired linear
circuit such as a custom filter design or a circuit with parasitics. The block supports a limited number
of SPICE netlist constructs, specifically conforming to Berkeley SPICE syntax [1] or the HSPICE
syntax [2]. Edit your SPICE netlist so that the desired circuit is described at the top level of the netlist
by supported netlist constructs. The block ignores any statements that use unsupported netlist
syntaxes.

The SPICE netlist can contain passive devices, independent sources, controlled sources, and
subcircuits.

If present, independent sources are interpreted as input ports by the Linear Circuit Wizard block. The
name of the input port is the designator for the circuit element, the port type matches the source
type, and the nodes are the nodes to which the source is connected. For each such input port, the
stimulus is the Simulink® signal connected to the port, not the description provided by the SPICE
netlist.

The output ports are defined by .PRINT or .PLOT statements conforming to the HSPICE syntax.
Because the SPICE statements do not supply port names for probed voltages, the Linear Circuit
Wizard block supplies default names for voltage output ports. Current output ports are named after
the independent voltage source used to sense the current. The netlist must contain all of the circuit
nodes and circuit elements required to support the output ports.

The Linear Circuit Wizard block does not support mathematical functions.

Supported SPICE Syntax

Statements can be continued onto multiple lines by starting each continuation line with a plus sign
("+"). For example, these two statements are equivalent.

El 2 0 LAPLACE 3 4 6.3e7/6.3e4 1 E1l 2 0 LAPLACE 3 4
+ 6.3e7/6.3e4 1

Three forms of comment are supported.

* Block comment. The comment block starts with the line #com and ends with the line #endcom. For
example:

#com

When you’'re lying awake with a dismal headache
and repose is taboo’d by anxiety,

I conceive you may use any language you choose
to indulge in without impropriety.

#endcom

* Line comment. The comment is a line that starts with an asterisk ("*"). For example:

* Gilbert, Iolanthe, act 2, “Love, unrequited, robs me of my rest”, line 5
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* End of line comment. The comment follows a pipe symbol ("|") and is ignored. For example:

.end | That’s all, folks.

The node labeled “0” is defined as the common return node for the circuit.

Component

Syntax

Comment

Passive Devices

<value>

Resistor R<name> <+ node> <- node> |Create a resistor with a specific
<value> value.

Capacitor C<name> <+ node> <- node> |Create a capacitor of a specific
<value> value.

Inductor L<name> <+ node> <- node> |Create an inductor of a specific

value.

Mutual inductance

K<name> <inductor name>
<inductor name> <value>

Create a mutual inductance
coupling between two inductors.

For each inductor, current flow
in the positive direction is from
the first node to the second
node in the statement that
creates the inductor.

The circuit element value is the
mutual inductance factor k,
where 0 < k < 1.

Independent Sources

Independent voltage source

V<name> <+ node> <- node>

Create an input voltage port in
the Simulink block.

Independent current source

I<name> <+ node> <- node>

Create an input current port in
the Simulink block.

Controlled sources

Voltage controlled voltage
source

E<name> <+ node> <- node>
<+ control node> <- control
node> <gain>

E<name> <+ node> <- node>
LAPLACE <+ control node> <-
control node> <ko, k1, ...km>/
<do0,d1,...dn>

Create a voltage controlled
voltage source.

The gain can be a constant
value or a rational transfer
function.

See “LAPLACE Keyword” on
page 7-5 for the transfer
function definition.
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Component

Syntax

Comment

Current controlled current
source

F<name> <+ node> <- node>
<voltage source name> <gain>

F<name> <+ node> <- node>
LAPLACE <voltage source
name> <kO0, k1, ...km>/<d0,d1,
...dn>

Create a current controlled
current source.

The gain can be a constant
value or a rational transfer
function.

The current through the
controlling voltage source
determines the output current.
The controlling source must be
an independent voltage source,
although it does not need to
have a zero DC value.

See “LAPLACE Keyword” on
page 7-5 for the transfer
function definition.

Voltage controlled current
source

G<name> <+ node> <- node>
<+ control node> <- control
node> <gain>

G<name> <+ node> <- node>
LAPLACE <+ control node> <-
control node> <ko, k1, ...km>/
<do0,d1,...dn>

Create a voltage controlled
current source.

The gain can be a constant
value or a rational transfer
function.

The current through the
controlling voltage source
determines the output current.
The controlling source must be
an independent voltage source,
although it does not need to
have a zero DC value.

See “LAPLACE Keyword” on
page 7-5 for the transfer
function definition.

Current controlled voltage
source

* H<name> <+ node> <-
node> <voltage source
name> <gain>

* H<name> <+ node> <-
node> LAPLACE <voltage
source name> + <ko, k1, ...
km>/<d0,d1,...dn>

Create a current controlled
voltage source.

The gain can be a constant
value or a rational transfer
function.

See “LAPLACE Keyword” on
page 7-5 for the transfer
function definition.

Subcircuit
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Component Syntax Comment
Subcircuit X<name> <external node Create an instance of a
names> <subcircuit name> subcircuit. The number of
<parameter list> external nodes must equal the
number of nodes in the
subcircuit definition. Entries in
the parameter list take the form
<name> = <value>.
Commands
.PARAM .param <param name> = Definable parameter
<expression>
.SUBCKT .subckt <subname> <external |Begin the definition of a
node names> <parameter list> |subcircuit. The number of
external nodes is arbitrary.
Entries in the parameter list
take the form <name> =
<value>. Subcircuit definitions
can be nested.
.ENDS .ends Directive to end a subcircuit
definition.
.ends <subname>
.END .end Directive to end the netlist.
Optional command.
INC .Anc[lude] <file name> Directive to include contents of
an external netlist
.PRINT .print V<name>(<one or two Directive to define output ports.
nodes>) | I<name>(<voltage Multiple voltage and current
source name>) outputs can be defined in a
single statement. Port names
are optional but recommended.
.PLOT .plot V(<one or two nodes>) | |Directive to define output ports.

I(<voltage source name>)

Multiple voltage and current
outputs can be defined in a
single statement.

LAPLACE Keyword

The LAPLACE keyword defines a Laplace domain transfer function for a controlled voltage or current
source. The transfer function is defined by a series of transfer function numerator coefficients, from
constant term to highest power of s, followed by a forward slash (‘/’), followed by a series of

denominator coefficients from constant term to highest power of s.

References

[1] "SPICE Circuit Components." http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/UserGuide/

elements frhtml.
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[2] "HSPICE® User Guide: Simulation and Analysis." https://cseweb.ucsd.edu/classes/wil0/cse241a/
assign/hspice sa.pdf.

See Also
Linear Circuit Wizard

Related Examples
. “Circuit Design Details Affect PLL Performance” on page 3-16

More About
. “Converting a SPICE Netlist to Simscape Blocks” (Simscape Electrical)



Define Device Noise Using Linear Circuit Wizard

Define Device Noise Using Linear Circuit Wizard

You can use the Linear Circuit Wizard block to generate device noise and model the response of a
linear circuit. The device noise generators are built inside the MATLAB System block that the Linear
Circuit Wizard configures, and include flicker noise as well as uniformly distributed Gaussian noise.

Note The Linear Circuit Wizard also offers a Device noise source type of input port through which
you can inject your own model of device noise. For any given device, you should use either a Device
noise source input port or an internal device noise generator, but not both.

Device List

The device noise generators are designed to model the current noise produced by resistors and
semiconductor devices such as MOSFETs. In the Device Noise Generators tab of the Linear Circuit
Wizard, you can select from a list of resistors and controlled current sources, which are the circuit
elements for which device noise can be modeled. To model a source of device noise, choose the
circuit element from the list, enable its device noise generator, and set the parameters for that device
noise generator. To disable a device noise generator, select the circuit element and disable its device
noise generator.

Device Noise Specification

You can configure a device noise generator using three parameters: Noise coefficient, Corner
frequency, and Independent noise source/Noise generator seed.

Noise Coefficient

The Noise coefficient parameter defines the spectral density of the generated noise through the
equation
i2 = 4kTG

where i? is the noise spectral density in A%2/Hz, k is Boltzmann'’s constant, T is the temperature in
degrees Kelvin, and G2 is the noise coefficient in units of conductance (Siemens or 1/Ohms).

For resistors, the device noise is Johnson/Nyquist noise, and the noise coefficient is G = 1/R, where R
is the conductance of the resistor. The Linear Circuit Wizard performs this calculation from the
resistor value in the netlist and sets the noise coefficient to the resulting conductance.

For MOSFETSs, the noise coefficient is G = ygqs,, Wwhere y has a lower bound of 2/3 for MOSFETs with
relatively long channel length, and can be 1.5 or greater for short channel MOSFETSs. g4, is the
output conductance at zero drain bias. Because y is process dependent, you must perform this
calculation and enter the resulting noise coefficient.

Corner Frequency

The Corner frequency parameter defines the flicker noise for the device. Flicker noise spectral
density increases as approximately 1/f. The corner frequency is the frequency at which the flicker
noise is approximately equal to the spectral density of the uniformly distributed thermal noise. The
corner frequency is process dependent, but typically has a value around 1 kHz.

Within the MATLAB System block configured by the Linear Circuit Wizard, the frequency response of
the flicker noise is implemented by a filter which accurately creates the 1/f spectral density from the
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corner frequency to four decades below the corner frequency. At even lower frequencies, the modeled
flicker noise is essentially constant.

Independent Noise Source/Noise Generator Seed

While most sources of device noise are statistically independent of each other, there are cases in
which the same noise process is affects the outputs of multiple devices. For the most common case,
enable Independent noise source. However, when multiple devices must be driven by the same
stochastic process, disable Independent noise source on the device noise generator for each of
those devices and set Noise generator seed to the same positive integer. The resulting device noise
generators share the same stochastic process but are statistically independent of all other device
noise generators.

See Also
Linear Circuit Wizard

More About
. “Circuit Design Details Affect PLL Performance” on page 3-16
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Ports Supported in Linear Circuit Wizard

The Linear Circuit Wizard block uses the port definitions you supply either through the SPICE netlist
or the Linear Circuit Wizard’s parameter dialog to supply ports on the blocks it produces that are
compatible with signals from other Simulink blocks.

Block Ports

The input ports on the blocks that the Linear Circuit Wizard produces accept input signals that
represent either a voltage or a current. Similarly, the output ports produce signals which represent
either a voltage or a current. Both input and output signals must use a fixed step discrete sample
time equal to the block’s sample time.

There are five types of ports.

Port Type Port Circuit Definition Definition from Netlist

Voltage input The input signal is the node Independent voltage source
voltage of a positive circuit node
minus the node voltage of a
negative circuit node.

Current input The input signal is a current Independent current source
flowing into a positive circuit
node and back out through a
negative circuit node.

Voltage output The output signal is the node V(<node> <node>) clause
voltage of a positive circuit node |in .print or .plot statement
minus the node voltage of a
negative circuit node.

Current output The output signal is the current |I(<voltage source>) clause
flowing through a voltage in .print or .plot statement
source from the positive output
node to the negative output
node. The voltage source must
be defined in the SPICE netlist.

Device noise source The input signal is a device
noise current that is assumed to
be flowing through a resistor or
controlled current source in the
circuit. The device must be
defined in the SPICE netlist. The
goal is to make it easier for you
to apply your own device noise
model to the circuit.

Parameter Dialog

Through the mask parameter dialog of the Linear Circuit Wizard, you can add or delete ports and
define the order in which the ports are listed.
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The parameter dialog displays the type, name, and nodes of a single port, along with an indication of
that port’s position in the list of ports. If no ports have been defined yet, then the type, name, and
nodes are blank and require your input. Choose a port from the port list, modify the port definition as
desired, and then choose an action.

Port list: Each entry in the port list is a number representing the position in the list, followed by the
port name.

Port type: Choose one of the five port types described in the table above.

Port name: The port name is a character array obtained by applying the eval function to the
parameter value that you specify. You can specify either a literal character array by enclosing the
name in single quotes (for example, 'portl') or the name of a workspace variable.

Port nodes: Select the port nodes from a list. The contents of the list are derived from the netlist,
and depend on the port type you have selected.

» For the Voltage input, Current input, and Voltage output port types, the list contains the
names of circuit nodes.

* For the Current output port type, the list contains the names of voltage sources.

* For the Device noise source port type, the list contains the designators of circuit elements that
could be sources of device noise.

Actions: The actions enabled depend on the content of the port list.

* Create: Add a new port to the list, based on the port definition currently displayed.

* Save: Save the currently displayed port definition to its current location in the port list.
* Delete: Remove the currently displayed port from the port list.

* Move up: Move the currently displayed port up one position in the port list.

* Move down: Move the currently displayed port down one position in the port list.

Port Report
You can obtain a table displaying the ports you've defined by clicking the Export ports button from

the . This creates the struct array LinearCircuitWizardPorts in your base workspace. Display or
inspect this struct array to see your port definitions in a table.

See Also
Linear Circuit Wizard

More About
. “Circuit Design Details Affect PLL Performance” on page 3-16
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MATLAB Systems Generated from Linear Circuit Wizard

You can use a single Linear Circuit Wizard block to configure one or more MATLAB System blocks to
be integrated into a larger Simulink model. The input and output ports of each MATLAB System block
will implement the ports defined in the SPICE netlist and parameter dialog, the block icon will be the
Circuit design name specified in the parameter dialog, and the name given to the block in your
model will be the Block name specified in the parameter dialog. Each MATLAB System block will
have a fixed step discrete sample time that can either be inherited from another block in the model or
set by the MATLAB System block itself.

Verify MATLAB System Block Configuration

Define and verify the configuration of a MATLAB System block in the Linear Circuit Wizard before
building it. You can also use the Linear Circuit Wizard to modify the configuration of a MATLAB
System block that it has already constructed by setting Block name to the name of the block to be
modified.

You can verify the Circuit design name, Block name, Netlist file name, port definitions, and
device noise generators. You can also verify the response of the block using either transfer function
plots or a transfer function pole/zero report. Both options are available as soon as the netlist file is
parsed and at least one output port is defined.

Plot transfer functions: Click the Plot transfer functions button to obtain a plot of all of the
transfer functions the block will implement. This produces a figure window with a separate tab for
each output port. Each output port tab plots the transfer function magnitude from each input port
and device noise generator to that output port. The plot scale is decibels of gain versus log frequency,
making it easier to identify approximate pole and zero locations as well as overall gain.

Export poles and zeros: Click the Export poles and zeros button to obtain a report of the transfer
function poles and zeros. This produces the struct array LinearCircuitWizardPoleZero in your
base workspace. The fields of each struct are:

* Poles: A row vector of complex pole locations in the Laplace domain

» Zeros: A cell matrix in which each cell is a row vector of complex zero locations in the Laplace
domain, one for each channel through the block

* Gains: A matrix of real-valued gains, one for each channel through the block

Build MATLAB System Block

To configure a new or existing MATLAB System block to reflect the configuration currently defined in
the Linear Circuit Wizard, click the Build/modify block button. If in doubt, look for a warning
message in the Linear Circuit Wizard parameter dialog indicating that the block does not reflect the
current configuration. Clicking the Build/modify block button will resolve the warning.

Sample Time

The sample time of the MATLAB System block is specified in terms of a sample rate (frequency)
rather than directly as a sample time. You can configure the sample time of the MATLAB System
block through its parameter dialog. The default condition is for the block to inherit its sample time.
To set the sample time of the block directly, disable Inherit sample rate from input. This enables
the Sample rate parameter. Set the sample rate to the desired frequency.
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MATLAB System blocks configured by the Linear Circuit Wizard often model analog circuits that are
combined with other blocks that model digital circuits. Whereas analog circuits are usually modeled
using a fixed step discrete sample time, digital circuits are usually modeled using a variable step
discrete sample time. For more information on combining fixed step discrete sample time with
variable step discrete sample time, see the example “Digital Timing Using Fixed Step Sampling” on
page 3-7.

See Also
Linear Circuit Wizard

More About

. “Circuit Design Details Affect PLL Performance” on page 3-16
. “Digital Timing Using Fixed Step Sampling” on page 3-7
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